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Attribute-Based Encryption [SW05,GPSW06]
=  access control,   enforced by cryptography

access control list

rwx rwx rwx
= permission bits

only enforced by
checks in programs (OS)
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What about PKE for Access Control?

Gen → pk1, sk1  

pk1

Enc pk1, 𝜇 → ct1 

ct1

Gen → pk2, sk2  
 ⋮ 

pk2, …

Enc pk3, 𝜇 → ct3 
            ⋮

✘  new users always unauthorized
✘ ct ∝ # sk that can decrypt

OS Analogy.  New users (e.g., given suitable group membership) might be authorized.

✘  individual-based, not policy-based
✘  not scalable
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Syntax and Correctness of ABE

Setup → mpk, msk  

mpk

Enc mpk, 𝑥, 𝜇 → ct𝑥 𝜇
“attribute” message (WLoG ∈ 0,1 )

KeyGen msk, 𝑓 → sk𝑓 
“policy”

mpk, 𝑓, sk𝑓  

𝑥, ct𝑥

Dec mpk, 𝑓, sk𝑓 , 𝑥, ct𝑥 → 𝜇

if 𝑃 𝑓, 𝑥 = 1

✔  Policy-Based.  New users are authorized if 𝑃 𝑓, 𝑥 = 1.
✔  Scalable.        ct  does not grow with # sk issued .

•  Example.  In key-policy ABE, 𝑓 is a function of 𝑥.

•  𝑓, 𝑥 are not hidden and are given verbatim for free.
•  𝑓, 𝑥 are bound to sk, ct.
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Security of ABE

Enc mpk, 𝑥, 𝜇 → ct𝑥 𝜇

KeyGen msk, 𝑓 → sk𝑓 
mpk, 𝑓, sk𝑓  

𝑥, ct𝑥

mpk, 𝑓, sk𝑓 , 𝑥, ct𝑥 0 ≈ ⋯, ct𝑥 1

if 𝑃 𝑓, 𝑥 = 0

1-key security
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Security of ABE – Collusion Resistance

Enc mpk, 𝑥, 𝜇 → ct𝑥 𝜇

KeyGen msk, 𝑓𝑗 → sk𝑗  
mpk, 𝑓𝑗 , sk𝑗 𝑗  

𝑥, ct𝑥

mpk, 𝑓𝑗 , sk𝑗 𝑗 , 𝑥, ct𝑥 0 ≈ ⋯, ct𝑥 1

if 𝑃 𝑓𝑗 , 𝑥 = 0 for all 𝑗
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Security of ABE – Formal Definition

𝐸𝑏

mpk

𝑓𝑗

sk𝑗

𝑥

ct𝑥 𝑏

𝑓𝑗

sk𝑗 𝑏′

Security.  𝐸0 ≈ 𝐸1 under the constraint of 𝑃 𝑓𝑗 , 𝑥 = 0 for all 𝑗.

Adaptive Security.
• 𝑓𝑗   depends on  mpk, sk<𝑗

• 𝑥       —"—        mpk, sk<𝐽1

• 𝑓𝑗       —"—        mpk, sk<𝑗 , ct
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Security of ABE – Weaker Notions

𝐸𝑏

𝑥 or 𝑥, 𝑓𝑗 𝑗
Selective.  𝑥 must be chosen first.

Very Selective.  𝑥 and all 𝑓𝑗’s —"—.
mpk

𝑓𝑗

sk𝑗

ct𝑥 𝑏

𝑓𝑗

sk𝑗 𝑏′

Security.  𝐸0 ≈ 𝐸1 under the constraint of 𝑃 𝑓𝑗 , 𝑥 = 0 for all 𝑗.
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Why Study ABE?

ABE

applications
(utility) •  access control

audit logs [GPSW06]  medical records [APGLPR11]
private key distribution in cloud [Cloudflare17]

•  verifiable delegated computation [PRV11]

•  non-trivial witness encryption [BJKPW17]

generalizations
(conceptual impact) •  decentralization [C07,AYY22,HLWW22]

multi-authority/input or registered

•  stronger functionality [SBCSP07,BW07,BSW11]
predicate / functional encryption

↑ connection to obfuscation
[GGHRSW13,BV15,AJ15]

interesting notion
by itself
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Pursuit of Ends – Desirata of ABE

Expressive.  Supports rich class of policies.

Succinct.      Short mpk, sk, ct.

Recall  Dec mpk, 𝑓, sk𝑓 , 𝑥, ct𝑥 .

does not have to
fully encode 𝑓, 𝑥

sk, ct bound to 𝑓, 𝑥 (not hiding)
• think hash / signature
• possible that sk < 𝑓 , ct < 𝑥

succinct

Efficient.      Fast Dec (and Setup, KeyGen, Enc).

Strong Security.         Adaptive > selective > very selective.

Weak Assumptions.  Falsifiable > non-falsifiable.
Static > adversary-dependent (𝑞-type).

These objectives are intertwined       !

affects
b

aselin
e
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Pursuit of Ends – Multi-Objective Optimization

Goal.  Characterize curve of Pareto optimality.

Push the Frontier.  Construct new schemes.
•  better than previous in at least one aspect

        (wishful) better in many aspects

•  some aspects are more prioritized
         (expressive, succinct)

Encircle the Boundary.  Prove trade-off lower bounds.

lower
bounds

new
prev.

aspect 1

aspect 2
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Pursuit of Means

Designing ABE schemes is… not easy!

Previously…

dual system encryption [W09] + refinements
• pair encoding [A14]
• predicate encoding [W14]

❑  born for adaptive security
⚠  only instantiated with pairing
⚠  heavy in algebra details

two-to-one recoding [GVW13]
key-homomorphic encryption [BGGHNSVV14]

⚠  new results only from lattices
⚠  too few instantiations

modular –  redistribute complexities
powerful –  new results
versatile –  flexible assumptions

12 / 58

https://eprint.iacr.org/2009/385
https://eprint.iacr.org/2014/428
https://eprint.iacr.org/2015/273
https://eprint.iacr.org/2013/337
https://eprint.iacr.org/2014/356


Organization New Frontiers of Attribute-Based Encryption
via a General Paradigm and More

Part I.  General Paradigm  (ABE ⇐ IPFE ∘ Garbling)
• 4 instantiations

[LL20a,LL20b,LLL22,HLL24]

Part II.  More
• ABE for circuits of unbounded depth from lattices

[HLL23]
• first systematic study of

optimal succinctness and efficiency for ABE
[JLL23,L24]
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Part I.  General Paradigm
Somewhat technical, but less so than
the sum of all those separate talks.
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ABE ⇐ Functional Encryption

sk𝑓 = fsk 𝑓′  

ct𝒙 𝜇 = fct 𝑦  

FE
decryption

𝑓′ 𝑦  ≝ 𝜇𝑓 𝒙

𝑦 = 𝒙, 𝜇

FE Security.  Hides everything about 𝑦 beyond 𝑓′ 𝑦 .

To solve this problem,
simply solve that

harder problem first!

high-degree in 𝒙
Idea.
• Decompose into two phases

(low-degree + high-degree).
• Use FE on low-degree only.
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Linear Garbling (Roughly) [Y82,Y86,AIK11,IW14]

1.  Garble 𝑓, 𝛿 → 𝐿1, … , 𝐿𝑚
•  affine (low-degree) functions of 𝑥  (label functions)
•  coefficients (𝑳’s) contain 𝛿, randomness

2.  ℓ1 = 𝐿1 𝒙 = 1, 𝒙 , 𝑳1 , … , ℓ𝑚 = 𝐿𝑚 𝒙 = 1, 𝒙 , 𝑳𝑚
•  labels

3.  Eval 𝑓, 𝒙, ℓ1, … , ℓ𝑚 → 𝛿𝑓 𝒙
•  high-degree in 𝒙

Protect 𝛿, randomness?  Protect this process!

“ℓ’s reveal nothing
about 𝛿 beyond 𝛿𝑓 𝒙 ”

not hidden
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Inner-Product FE (Roughly) [ABDP15]

isk 𝒗  

ict 𝒖  

IPFE
decryption 𝒖⊤𝒗 

“isk, ict’s hide everything
beyond the inner products”
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ABE ⇐ IPFE ∘ Garbling

sk𝑓 = isk 𝑳1 , … , isk 𝑳𝑚   (for 𝛿)

ct𝒙 𝜇 = ict 1, 𝒙 , 𝛿 ⊕ 𝜇 

IPFE
decryption

෣𝛿𝑓 𝒙 = 𝐿1 𝒙 , … , 𝐿𝑚 𝒙  
garbling

evaluation 𝛿𝑓 𝒙  

remove OTP
when 𝑓 𝒙 = 1

Composition of Security.  (wishful)
• IPFE –  only labels revealed
• garbling –  only 𝛿𝑓 𝒙  revealed
• 𝛿 is OTP for 𝜇 when 𝑓 𝒙 = 0

Security composition is tricky
and sensitive to formalism.

formalize properties
that compose well
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Pairing Groups

• 𝐺1, 𝐺2, 𝐺T      groups of order 𝑝 (prime)

 𝐺𝑖 = 𝑔𝑖 ,    additive,    𝑎 𝑖 ≝ 𝑎𝑔𝑖

• 𝑒: 𝐺1 × 𝐺2 → 𝐺T     non-degenerate bilinear map

 𝑒 𝑎𝑔1, 𝑏𝑔2 = 𝑎𝑏𝑔T,    𝑎 1 𝑏 2 = 𝑎𝑏 T

What is it good for cryptography?

Pairing = one-time, controlled multiplication.
✔ Easy 𝑎 1, 𝑏 ↦ 𝑎𝑏 1 and 𝑎 1, 𝑏 2 ↦ 𝑎𝑏 T.

DDH. 𝑎, 𝑏, 𝑎𝑏 1 ≈ 𝑎, 𝑏, 𝑐 1 for 𝑎, 𝑏, 𝑐 ՚
$

ℤ𝑝.

✘ Hard 𝑎 1, 𝑏 1 ↦ 𝑎𝑏 T.
• Provides some protection for 𝑥 in 𝑥 𝑖.
• Builds IPFE (full protection).
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IPFE in [LL20a]

Pairing-Based.

Dec isk 𝒗 2 ,  ict 𝒖 1 = 𝒖⊤𝒗 T

Function-Hiding. (hides 𝒖, 𝒗)*

impk, isk 𝒗𝑗0 𝑗 , ict 𝒖𝑖0 𝑖 ≈ impk, isk 𝒗𝑗1 𝑗 , ict 𝒖𝑖1 𝑖

if 𝒖𝑖0
⊤ 𝒗𝑗0 = 𝒖𝑖1

⊤ 𝒗𝑗1 for all 𝑖, 𝑗.Can compute 𝐼 × 𝐽 inner products 𝒖𝑖?
⊤ 𝒗𝑗?.

* not the full story, but good enough for now

ALS16 W17 LV16 L17

Fact.  Such IPFE can be built from 𝑘-Lin (standard, 
static assumption).  [ALS16,W17,LV16,L17]

Recall.  Garbling Eval after IPFE Dec.
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Garbling in [LL20a]

More Linear Properties.

1.  Garble 𝑓, 𝛿; 𝒓 → 𝑳1, … , 𝑳𝑚

linear in 𝛿, 𝒓
2.  ℓ𝑗 = 1, 𝒙 , 𝑳𝑗

3.  Eval 𝑓, 𝒙, ℓ1, … , ℓ𝑚

linear in ℓ1, … , ℓ𝑚

Security.  (distribution of ℓ1, … , ℓ𝑚)*

1.  ℓ2, … , ℓ𝑚 are jointly random.
2.  ℓ1 is uniquely determined by 𝑓, 𝑥, 𝛿𝑓 𝒙 , ℓ2, … , ℓ𝑚

 due to evaluation correctness, i.e.,
Eval 𝑓, 𝑥, ℓ1, ℓ2, … , ℓ𝑚 = 𝛿𝑓 𝒙 ,

 a linear constraint on ℓ1.

Point.  This leads to localized label simulation.

* not the full story, but good enough for now

Fact.  Such garbling for arithmetic branching 
programs (ABP) exists.  [IK00,IK02,IW14]

ABP = determinant of certain matrices
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Instantiating the Paradigm in [LL20a]

sk𝑓 = isk 𝑳1 2 , … , isk 𝑳𝑚 2  

ct𝒙 𝜇 = ict 1, 𝒙 1  

IPFE
decryption

෣𝛿𝑓 𝒙 = ℓ1 T, … , ℓ𝑚 T Eval
linear in ℓ’s

𝛿𝑓 𝒙 T 
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Selective Security in [LL20a]

ict ( 1, 𝒙 )

isk ( 𝑳1 )

isk ( 𝑳2 )

⋮

isk ( 𝑳𝑚 )

IPFE

≈
ict ( 1, 𝒙 )

isk ( ℓ1, 𝟎 )

isk ( ℓ2, 𝟎 )

⋮

isk ( ℓ𝑚, 𝟎 )

ℓ𝑗 = 1, 𝒙 , 𝑳𝑗

garbling

≡
ict ( 1, 𝒙 )

isk ( ℓ1, 𝟎 )

isk ( ℓ2, 𝟎 )

⋮

isk ( ℓ𝑚, 𝟎 )

ℓ2, … , ℓ𝑚 = $

solve
Eval 𝑓, 𝒙, ℓ1, ℓ2, … , ℓ𝑚 = 𝛿𝑓 𝒙

for ℓ1 = 0  (constraint)

✔ independent of 𝛿
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Problem with Adaptive Security in [LL20a]

isk ( 𝑳1 )

isk ( 𝑳2 )

⋮

isk ( 𝑳𝑚 )

𝒙

ict ( 1, 𝒙 )

isk ( ℓ1, 𝟎 )

isk ( ℓ2, 𝟎 )

⋮

isk ( ℓ𝑚, 𝟎 )

ℓ𝑗 = 1, 𝒙 , 𝑳𝑗

ict ( 1, 𝒙 )

𝒙 not known
at this point ↓

isk ( ℓ1, 𝟎 )

isk ( ℓ2, 𝟎 )

⋮

isk ( ℓ𝑚, 𝟎 )

ℓ2, … , ℓ𝑚 = $

ict ( 1, 𝒙 )

solve
Eval 𝑓, 𝒙, ℓ1, ℓ2, … , ℓ𝑚 = 0 

for ℓ1

cannot solve equation
dependent on 𝒙 →
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Fixing Adaptive Security in [LL20a]

isk ( 𝑳1 0 )

isk ( 𝑳2 0 )

⋮

isk ( 𝑳𝑚 0 )

𝒙

ict ( 1, 𝒙 0 )

many steps

≈
*

* untold part of garbling security

isk ( 0, 𝟎 1 )

isk ( ℓ2, 𝟎 0 )

⋮

isk ( ℓ𝑚, 𝟎 0 )

ℓ2, … , ℓ𝑚 = $

ict ( 1, 𝒙 ℓ1 )

solve
Eval 𝑓, 𝒙, ℓ1, ℓ2, … , ℓ𝑚 = 0 

for ℓ1

✔ can be generated
✔ independent of 𝛿
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Multi-Ciphertext Security in [LL20a]

isk 𝑳𝑗 𝑗

ict 1, 𝒙1 𝐿𝑗 𝒙1 𝑗

ict 1, 𝒙2 𝐿𝑗 𝒙2 𝑗

✘ Garbling security breaks
if label functions are reused !

isk 𝑳𝑗 2 𝑗

ict 𝑠1, 𝑠1𝒙1 1 𝑠1𝐿𝑗 𝒙1 T 𝑗

ict 𝑠2, 𝑠2𝒙2 1 𝑠2𝐿𝑗 𝒙2 T 𝑗

✔ DDH ensures 𝑳𝑗 , 𝑠𝑖𝑳𝑗 𝑖 𝑗

looks fresh in group.
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ABE for Uniform in [LL20a]

Previous.  input length of 𝑓 is fixed  (non-uniform model)

Now.  more flexible (e.g., NFA)
• skΓ for regular expression Γ

(works with all possible input length)
• ct𝒙 for input string 𝒙

(works with all possible reg.exp. size)

Same Paradigm.
• garbling for NFA, NL
• use IPFE to compute garbling
• proof guided by same idea

simple idea, complex execution,
IPFE helpful in managing proof

Tweaks.  garbling size Θ Γ ⋅ 𝒙
• sk = Θ Γ  many isk’s
• ct = Θ 𝒙  many ict’s

make every pair of decryption useful!
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Achievements of [LL20a]

LOSTW10

GSPW06

LW12

KW19 GW20

W12 A14 AMY19 GWW19

GW20

ABE for Non-Uniform.  ABP, adaptive, standard assumptions.
• Previous.  puts bound on program size upon Setup [LOSTW10],

  or non-adaptive [GSPW06],
  or non-standard assumptions [LW12].

• Previous, Concurrent.
  for Boolean formula / branching programs [KW19,GW20].

ABE for Uniform. N L, (linear-size) N/DFA, adaptive, standard assumptions.
• Previous.  for DFA,

 non-adaptive or large components or non-standard assumptions
            [W12,A14,AMY19,GWW19].

• Concurrent.  [GW20]
 for DFA, same achievements;
 for NFA, non-adaptive.

* comparison only with pairing-based schemes
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Power of Paradigm Exhibited by [LL20a]

LL20b

DP21 DPT22

one method solving many open problems (pairing-based)
•  adaptive ABE for arithmetic computation / DFA
•  ABE for NFA

almost the end game of adaptive standard ABE from pairing
•  small remaining gap between selective/adaptive ABE

 (arithmetic span program vs ABP)
•  still the only known adaptive ABE for NFA, L, NL

 (for ABP, improved in [LL20b])

reused in the future
•  next-up in this talk
•  same IPFE / garbling used for AB-FE for ABP, L  [DP21,DPT22]

✘ Size of garbling with our security notion
is tightly related to ABP size.  [Luo20汉]
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Remember Succinctness?

sk𝑓 = isk 𝑳1 , … , isk 𝑳𝑚  

• has 𝑚 = 𝑓  objects (isk’s)
• has ≥ 𝑚 bits of (garbling) randomness

must hide garbling randomness

ct𝒙 𝜇 = ict 1, 𝒙  

• IPFE (hiding) security  ⟹ ict ≥ 𝒙

nothing to hide

IPFE

≈
(𝒙 then 𝑓)

isk ℓ1, 𝟎 , … , isk ℓ𝑚, 𝟎  

ict 1, 𝒙  

no hiding required
for “𝒙 then 𝑓” case

(non-hiding – more difficult for proof)

use non-hiding isk to bind to 𝒙
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Using IPFE with Succinct Keys

ct𝑓 𝜇 = ict 𝑳1 , … , ict 𝑳𝑚  

𝒙

sk𝒙 = isk 1, 𝒙  

✔ isk = O 1
⚠  no hiding
❑  CP-1-ABE

many steps?

≈
(𝑓 then 𝒙)

ict 0, 𝟎, 1 , 
ict ℓ2, 𝟎 , … , ict ℓ𝑚, 𝟎  

isk 1, 𝒙, ℓ1  

cannot hardwire ℓ1

by changing vector

Solution.  IPFE with simulation security.

Two values hardwired during proof.

(stronger formulation compatible with proof)
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IPFE with Simulation Security

impk

{ isk ( 𝒗𝑗 ) }

ict ( 𝒖 )

{ isk ( 𝒗𝑗 ) }

≈

෫impk

{ ෪isk ( 𝒗𝑗 ⊥ ) }

input to simulator

෪ict ( ⊥ 𝒖⊤𝒗𝑗 𝑗<𝐽1 )

{ ෪isk ( 𝒗𝑗 𝒖⊤𝒗𝑗 ) }

At every moment,(adaptive)

input to simulator is
whatever is intended 

to be revealed.

LL20b

Stronger Formulation.  [LL20b]
1. Can simulate up to 𝑇 ciphertexts.

     (𝑇 tunable at Setup,  affects component sizes)

2. Can do/undo simulation for any ict in the presence of other ෪ict’s.

Constructions.  [LL20b]
• Generically from any selectively secure IPFE.
• Direct by modifying [ALS16] (better efficiency).
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Using Simulation-Secure IPFE in [LL20b]

ct𝑓 𝜇 = ict 𝑳1 , … , ict 𝑳𝑚  

𝒙

sk𝒙 = isk 1, 𝒙  

✔ isk = O 𝑇  with 𝑇 = 2

❑  CP-1-ABE

many steps

≈
(𝑓 then 𝒙)

෪ict ⊥ ⊥ , 
ict ℓ2, 𝟎 , … , ict ℓ𝑚, 𝟎  

෪isk 1, 𝒙 ℓ1  

Multi-key security?  KP-ABE?
• CP-1-ABE + dual system [W09] ⟹ KP-ABE
• KP-ABE ⟹ KP-1-ABE (trivial)
• KP-1-ABE + dual system              ⟹ CP-ABE** a factor of 2 shaved off in sizes compared to

usual implementation of dual system, somehow…
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Summary of [LL20b]

A16 ZGTCLQC16

AT20

LL20a

Achievements in Succinct ABE.  ABP, adaptive, standard assumptions.
• Part with 𝒙 is Succinct.  ct𝒙 in KP-ABE,  sk𝒙 in CP-ABE.
• Previous.  only (natively) for Boolean computation,

  non-adaptive or non-standard assumptions [A16,ZGTCLQC16].
• Concurrent.

  for Boolean formulae [AT20]
  only 1 fewer group element in ct for KP.

What about the Paradigm?  (not fully within paradigm)
• “Ablation Study” of Roles of IPFE.  By comparing [LL20a] with literature…

 computing      garbling (new IPFE);
 rerandomizing    garbling (dual system).

• Learn in Abstraction, Improve by Breaking It.
 paradigm = bridge to reach the goal?
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Moving Beyond Noiseless Garbling

Part with 𝒙 is Succinct.  ct𝒙 in KP-ABE,  sk𝒙 in CP-ABE.
Part with 𝑓?

Fact.  Size of noiseless linear garbling tightly related
            to span program size [B84,M87,BDHM92,KW93]
 (linear algebraic computation,  low-depth).

Noiseless
• cannot make 𝑓-part succinct
• does not handle high depth

Let’s try allowing noises!
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Attribute Encoding from Lattices [BGGHNSVV14,GV15]

𝑨 = 𝑨1, … , 𝑨 𝒙 ∈ ℤ𝑞
𝑛× 𝒙 𝑚 EvalC

for circuit 𝐶
𝑨𝐶 ∈ ℤ𝑞

𝑛×𝑚

𝑚 
𝑛 

𝒔⊤ 𝑨 − 𝒙 ⊗ 𝑮 + 𝒆⊤

↑

= 𝒔⊤ 𝑨1 − 𝒙 1 ⋅ 𝑮 + 𝒆1
⊤, …  

EvalCX
for 𝐶 and 𝒙 𝒔⊤ 𝑨𝐶 − 𝐶 𝒙 ⋅ 𝑮 + 𝒆𝐶

⊤

𝑚 

• homomorphic encoding

• sizes depend on depth 𝑑 of 𝐶,
        not size

• noise growth is exponential in 𝑑
* What is 𝑮?
Some fixed, publicly known matrix – details not needed for now.
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Noisy Linear Garbling from Attribute Encoding
Public Parameters.    𝑨, short 𝒛

Labels.    𝒔⊤ 𝑨 − 𝒙 ⊗ 𝑮 + 𝒆⊤ = 𝒔⊤ 𝑨 − 𝒙 ⊗ 𝑮
﹋﹋﹋﹋﹋﹋

= 𝒄⊤  (wavy = noises)

Evaluation.

1.  𝒄⊤
 EvalCX 

𝒔⊤ 𝑨𝐶 − 𝐶 𝒙 ⋅ 𝑮
﹋﹋﹋﹋﹋﹋﹋﹋

= 𝒄𝐶
⊤

2.  output 𝒄𝐶
⊤𝒛

= 𝒔⊤𝑨𝐶𝒛
﹋﹋﹋

− 𝐶 𝒙 ⋅ 𝒔⊤𝑮𝒛
﹋﹋

• 𝐶 𝒙 = 0, then just the secret
• 𝐶 𝒙 = 1, then 𝒔⊤𝑮𝒛

﹋﹋
 is OTP to hide secret

Changes.
• “𝑃 𝐶, 𝑥 = ¬𝐶 𝒙 ” – recover secret when 𝐶 𝒙 = 0
• secret is 𝒔⊤𝑨𝐶𝒛

﹋﹋﹋

*

* not the full story, but good enough for now
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Using Noisy Linear Garbling in [LLL22]

ct𝑓 𝜇 = ict 𝒔⊤𝑨1 + 𝒆1
⊤, 𝒔⊤ 𝑨1 − 𝑮 + 𝒆1

⊤
1 , … 

ct𝑓 = O 𝒙 2 < 𝑓

sk𝒙 = isk 𝑟 ¬𝒙, 𝒙 2  
sk𝒙 = O 1

•  selects 𝒔⊤𝑨1
﹋﹋

 or 𝒔⊤ 𝑨1 − 𝑮
﹋﹋﹋﹋﹋

 etc.

•  DDH-style rerandomization with 𝑟

IPFE
decryption

𝑟(𝒔⊤ 𝑨1 − 𝒙 1 ⋅ 𝑮 + 𝒆1
⊤)

T
, … Eval

✔ polynomial noise for
log-depth circuits (formulae)

𝜇 T 

DDH cannot rerandomize small noises
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Generic Group Model [S97,M05]

Standard Model.
•  arbitrary computation on group element represented in bits
•  certain computational problem is hard

Generic Group Model.
•  only operations via group-theoretic interfaces

• addition, negation, zero-testing
• pairing

•  (equivalently) adversary capability
 = zero-test any linear function of 1, 𝒘1 1 ⊗ 1, 𝒘2 2, 𝒘T T

intuitive although strong

more control of adversarial behavior
⟹  easier to write proofs

Saw 𝑤1 = 𝑎 1, 𝑤2 = 𝑏 2, 𝑤T = 𝑐 T.
Define 𝐿 𝑟, 𝑠 = 𝑟 − 𝑠.  Ask 𝐿 𝒘1 ⊗ 𝒘2, 𝒘T =

?
0.

Yes/no.  (Tests whether 𝑎𝑏 = 𝑐.)
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Very Strong IPFE Simulation Security of [LLL22]
Generic Group Model.

“All you can do is to zero-test linear functions of
  pairing results (and target group elements).”

IPFE Simulation in GGM.

“All you can do is to zero-test linear functions of
  inner products (and key vectors).”

e.g.,      impk, ict 𝒖1 , ict 𝒖2 , isk 𝒗1 , 𝒗1 2, isk 𝒗2 , 𝒗2 2

GGM queries

GGM oracle

≈
simulator

e.g.,
𝒖1

⊤𝒗2 + 3𝒗2 4 − 5 =
?

0 

inner product
zero-test oracle

ABDP15

✔  proven for [ABDP15]
✔  rerandomization with 𝑟 now works
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Summary of [LLL22]

AY20

AWY20 LL20a

BGGHNSVV14

CW23

Doubly Succinct CP-ABE.  for Boolean formulae (log-depth circuits)
• sk𝒙 = O 1 < 𝒙   and  ct𝑓 = O 𝒙 2 < 𝑓
• first ABE with non-trivial double succinctness

• Previous. [AY20]      CP-ABE from pairing + lattices
  [AWY20]   —"—  with [LL20a] IPFE  (not doubly succinct)

More Succinct KP-ABE.  for Boolean circuits with sk𝐶 = O 1
• Previous. [BGGHNSVV14]  with sk𝐶 = poly 𝑑
• Later. [CW23]                 from just LWE

Versality of Paradigm.  Can combine pairing and lattices.

41 / 58

https://eprint.iacr.org/2022/659
https://eprint.iacr.org/2020/228
https://eprint.iacr.org/2020/1179
https://eprint.iacr.org/2020/318
https://eprint.iacr.org/2014/356
https://doi.org/10.1109/FOCS57990.2023.00032


Lattices, not Pairing

Why not pairing?
• not post-quantum secure
• noise must be polynomially bounded

Learning with Errors (LWE).

𝑨,

𝑚 
𝑛 

𝒔⊤𝑨 + 𝒆⊤

𝑛 ×
𝑚 

𝑛 

+ 𝑚 

≈ 𝑨, $

•  presumably post-quantum
•  OK with somewhat large noise
✔  builds some IPFE

✘  IPFE insufficient for ABE

42 / 58



Rerandomization with Lattice-Based IPFE

ct𝑓 𝜇 = ict 𝑺𝑨1, 𝑺 𝑨1 − 𝑮 , … 

sk𝒙 = isk 𝒓⊤ ¬𝒙, 𝒙  

IPFE
decryption

𝒓⊤𝑺 𝑨1 − 𝒙 1 ⋅ 𝑮 + noise, … 

garbling randomness
easier to fix

not good enough from
existing lattice-based IPFE

Goal.  lattice-based IPFE giving good noises
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Lattice Trapdoors [MP12] and Evasive LWE [W22,T22]

trapdoor of 𝑩 = information about 𝑩 for solving 𝑩𝑲 = 𝑷 for small 𝑲, given any 𝑷

“𝑲 = 𝑩−1 𝑷 ”

𝒔⊤𝑩 + 𝒆⊤ ⋅ 𝑩−1 𝑷 = 𝒔⊤𝑷 + 𝒆⊤𝑲

𝒔⊤𝑩
﹋﹋

⋅ 𝑩−1 𝑷 = 𝒔⊤𝑷
﹋﹋

• controlled multiplication

• makes LWE fail
(no protection for 𝒔)

𝒔⊤𝑩
﹋﹋

⋅ 𝑩−1 𝟎   small
       $ ⋅ 𝑩−1 𝟎   random

Evasive LWE.  (conditional protection for 𝒔)
“The only meaningful way to use 𝑩−1 𝑷  is to

multiply it to 𝒔⊤𝑩
﹋﹋

 and ignore noise correlation.”

if 𝑩, 𝑷, 𝒔⊤𝑩 + 𝒆B
⊤, 𝒔⊤𝑷 + 𝒆P

⊤ ≈ 𝑩, 𝑷, $, $

then 𝑩, 𝑷, 𝒔⊤𝑩 + 𝒆B
⊤, 𝑩−1 𝑷 ≈ 𝑩, 𝑷, $, 𝑩−1 𝑷
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Evasive LWE and Evasive IPFE [HLL24]

Pairing.
controlled
multiplication

DDH or GGM.
some protection

IPFE (full protection)  ⟸ Lattice Trapdoor.
controlled
multiplication

LWE + Evasive LWE.
some protection

⟹  Evasive IPFE suffices for ABE *

* not the full story, but good enough for now

Functionality.

Dec impk, 𝒗, isk 𝒗 , ict 𝒖

= 𝒖⊤𝒗 + 𝑒Dec

Security.

if 𝒖𝑖
⊤𝒗𝑗 + 𝑒𝑖𝑗 𝑖𝑗 ≈ $ 𝑖𝑗

𝐼 × 𝐽 fresh noises

then

impk, 𝒗𝑗 , isk 𝒗𝑗 𝑗 , ict 𝒖𝑖 𝑖

≈ impk, 𝒗𝑗 , isk 𝒗𝑗 𝑗 , ict $ 𝑖
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Achievements of [HLL24]
BGGHNSVV14

BV20

W22

LL20a

AS17 W22

AMY19

W22

Lattice-Based CP-ABE.  for circuits (using garbling from [BGGHNSVV14])
• from LWE + evasive LWE

• Previous. [BV20]  no security proof
  [W22] from LWE + tensor LWE + evasive LWE

ABE for Uniform.  for DFA, L  (using garbling from [LL20a])
• first lattice-based public-key ABE for uniform

• Previous. [AS17,W22]  against bounded collusion
  [AMY19]       secret-key ABE for NFA
  [W22]            no security proof
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Summary of Paradigm ABE  ⟸  IPFE  ∘  Garbling

Composition of Security.
• IPFE      –  only rerandomized garblings revealed
• assumption   –  garblings are properly rerandomized
• garbling      –  secret/message hidden if unauthorized

[LL20a]

change IPFE

[LL20b]

change garbling

[LLL22]

change IPFE

[HLL24]

IPFE pairing-based lattice-based

garbling information-theoretic lattice-based I.-T.

Modular. Hides most raw usage of computational
  assumptions into IPFE and garbling security.

Powerful. Achieves various ABE with better properties.

Versatile. Works with pairing, lattice, or pairing + lattice.
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Open Questions from Part I

• Gap between selective/adaptive ABE from static pairing assumptions
 (arithmetic span program vs ABP)

• CP-ABE for circuits from falsifiable lattice assumptions
• ABE for DFA from falsifiable lattice assumptions

(Evasive LWE is non-falsifiable.)
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Part II.  More
Nothing technical now,
just the results and the messages.
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Bounded and Unbounded (KP-ABE)

Recall.    𝒔⊤ 𝑨 − 𝒙 ⊗ 𝑮 + 𝒆⊤
 EvalCX 

𝒔⊤ 𝑨𝐶 − 𝐶 𝒙 ⋅ 𝑮 + 𝒆𝐶
⊤

                noise growth exponential in depth 𝑑 of 𝐶

computation in ℤ𝑞  –  only works when 𝑑 = O log 𝑞

• 𝑞 is often chosen upon Setup.

• 𝑞 must be chosen upon Enc.
• ct𝒙 contains elements in ℤ𝑞 (attribute encoding).

• This forces 𝑑 ≤ ct ,
so ct𝒙 cannot work with sk𝐶  if 𝑑 > ct ,
even if 𝐶 𝒙 = 0.

• “ct𝒙 places an upper bound on 𝑑,” (depth-bounded)
even though 𝒙 has nothing to do with 𝑑.

WANT.  No upper bound on 𝑑 from mpk, ct  (“depth-unbounded”).
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Unbounded Evaluation for Attribute Encoding

Idea.  (similar to fully homomorphic encryption)
• Start from somewhat small noise.
• Perform some evaluation.  Noise becomes somewhat large.
• Reduce noise to somewhat small before it overflows.
• Rinse and repeat.

𝒔⊤ 𝑨y − 𝑦𝑮 + 𝒆sm
⊤

EvalCX

𝒔⊤ 𝑨z
′ − 𝑧𝑮 + 𝒆LG

⊤

rounding

Rounded 𝑨z
′ , 𝒔 − 𝑧𝒔⊤𝑮

noiseless, but
no further eval.

desired part
of eval. value

WANT.  𝒔⊤𝑨z − Rounded 𝑨z
′ , 𝒔 + 𝒆sm

′ ⊤

(can be computed using known techniques)

restore format

𝒔⊤ 𝑨z − 𝑧𝑮 + 𝒆sm
′ ⊤

∞ 51 / 58



Achievements and Open Questions [HLL23]

BGGHNSVV14

CW23

KP-ABE for circuits of unbounded depth.
• long-standing open problem
• from circular LWE + evasive circular LWE  (circular = encrypt 𝒔 using 𝒔)

• Previous. [BGGHNSVV14]  for bounded depth
• Concurrent.          [CW23]  for bounded depth with sk𝐶 = O 1

Related Primitives.  (with depth bound removed, from circular LWE)

Open Questions.  depth-unbounded KP-ABE
     from falsifiable (no “evasive”) lattice assumptions
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Dream and Actual Versions of ABE [JLL23]

Previous.  ABE for ABP, NL, circuits…

ABE for RAM  (best model for real-world programs)

sk𝑓 = O 1

ct𝑥 = O 1

𝑇Dec = O 𝑇RAM,𝑓,𝑥 possible that 𝑇RAM,𝑓,𝑥 < 𝑥     (think binary search)

from functional encryption for circuits
with arbitrarily bad efficiency... ↓

sk𝑓 ct𝑥 𝑇Dec

O 1 O 1 O 𝑇 + 𝑓 + 𝑥

𝑓 + O 1 O 1 O 𝑇 + 𝑥

O 1 𝑥 + O 1 O 𝑇 + 𝑓

𝑓 + O 1 𝑥 + O 1 O 𝑇

Are we (am I) stupid,
or is it some necessary evil ?
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[L24]

Theorem. For any secure ABE supporting 𝑃 𝑓 = 𝑖, 𝑥 = 𝑹 = 𝑹 𝑖 ,
  it holds that

ct𝑥 ⋅ 𝑇Dec = Ω 𝑥 .
  Similar trade-off lower bound holds between sk𝑓  and 𝑇Dec.

⟹    Schemes of [JLL23] are Pareto-optimal.

JLL23

Fact. Schemes of [JLL23] can be modified into

sk𝑓 = 𝑓 𝛼 + O 1 , ct𝑥 = 𝑥 𝛽 + O 1 , 

𝑇Dec = O 𝑇 × 𝑓 1−𝛼 + 𝑥 1−𝛽 ,

 for any constants 0 < 𝛼, 𝛽 < 1.

⟹    The trade-off lower bound is tight for 𝑇 = O 1 .
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Achievements of [JLL23,L24]

New Agenda.
• multi-objective optimization
• quest for Pareto-optimality

Trade-Off Lower Bounds for ABE.
• first such bounds
• Message. Maybe succinctness is not worth it

  if we must pay dearly for each decryption?

Constructions.
• down-to-constant optimization
• Pareto-optimal
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Open Questions from [JLL23,L24]

• fully pin down the Pareto frontier for general 𝑇

• Is “𝑓, 𝑥 verbatim for free” the correct cost model?

ct𝑥 = O 𝑥 𝑢

𝑇Dec = O 𝑇 + 𝑥 𝑣 + ⋯

(𝑇 = O 1 )

𝑣

𝑢

(general 𝑇)

𝑣

𝑢

Dec mpk, sk𝑓
′ , ct𝑥

′

from verbatim-for-free model.  ct𝑥
′ = 𝑥, ct𝑥

            cannot achieve 𝑇Dec = O 𝑇  with ct𝑥
′ = 𝑥 + O 1 .

other implementation achieving the goal?  (ct𝑥
′  encoding 𝑥 in some clever way) 
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