

New Frontiers of Attribute-Based Encryption via a General Paradigm and More 🗈 🗅 🚊

based on joint work with Yao-Ching Hsieh, Aayush Jain, Hanjun Li, Rachel Lin

Attribute-Based Encryption [SW05,GPSW06]

= access control, enforced by cryptography

rwx rwx rwx = permission bits

```
~/OneDrive/Documents/CSPhDArchives/Research
$ ls -l
            'ABE for P'/
drwxr-xr-x
             AH-BTR/
drwxr-xr-x
             AI-ROM-PRF-Sim/
drwxr-xr-x
drwxr-xr-x
             BMaps-MMaps/
             Bilibili/
drwxr-xr-x
             ComplexityZoo.pdf
-rw-r--r--
             'Dual Pairing Vector Space'/
drwxr-xr-x
```

What about PKE for Access Control?

 $\operatorname{Enc}(\operatorname{pk}_3, \mu) \to \operatorname{ct}_3$

X not scalable

OS Analogy. New users (e.g., given suitable group membership) might be authorized.

X |ct| ∝ #[sk that can decrypt]

3/58

Syntax and Correctness of ABE

Security of ABE

Security of ABE – Collusion Resistance

Security of ABE – Formal Definition

Adaptive Security.

- f_j depends on mpk, $sk_{< j}$
- x —"— mpk, $sk_{< J_1}$ f_j —"— mpk, $sk_{< j}$, ct

Security. $E_0 \approx E_1$ under the constraint of $P(f_i, x) = 0$ for all j.

Security of ABE – Weaker Notions

Security. $E_0 \approx E_1$ under the constraint of $P(f_j, x) = 0$ for all j.

Why Study ABE?

stronger functionality [SBCSP07,BW07,BSW11]

1 connection to obfuscation

[GGHRSW13,BV15,AJ15]

predicate / functional encryption

9/58

Pursuit of **Ends** – Desirata of ABE

Expressive. Supports rich class of policies.

circuits > formulae

RAM > TM > DFA

Succinct. Short mpk, sk, ct.

Recall
$$Dec(mpk, f, sk_f, x, ct_x)$$
.

does not have to fully encode f, x

succinct

sk, ct **bound** to f, x (**not hiding**)

- think hash / signature
- possible that |sk| < |f|, |ct| < |x|

Efficient. Fast Dec (and Setup, KeyGen, Enc).

 T_P = baseline for T_{De}

These objectives are intertwined 🥒!

Strong Security. Adaptive > selective > very selective.

Weak Assumptions. Falsifiable > non-falsifiable.

Static > adversary-dependent (*q*-type).

conceivable trade-off

- same construction
- proofs of different assumption ⇒ security

ffects baseline

Pursuit of Ends – Multi-Objective Optimization

Expressive

Succinct

lower bounds

new

aspect 1

Goal. Characterize curve of Pareto optimality.

Push the Frontier. Construct new schemes.

- better than previous in at least one aspect (wishful) better in many aspects
- some aspects are more prioritized (expressive, succinct)

Efficient

Strong Security

Weak Assumptions

Encircle the Boundary. Prove trade-off lower bounds.

Pursuit of Means

Designing ABE schemes is... not easy!

general paradigm / framework?

WANTED

modular – redistribute complexities

powerful - new results

versatile – flexible assumptions

Previously...

dual system encryption [Wo9] + refinements

- pair encoding [A14]
- predicate encoding [W14]

two-to-one recoding [GVW13] key-homomorphic encryption [BGGHNSVV14]

- born for adaptive security
- **n** only instantiated with pairing
- heavy in algebra details
- **new results only from lattices**

Organization

New Frontiers of Attribute-Based Encryption via a **General Paradigm** and **More**

Part I. General Paradigm (ABE ← IPFE ∘ Garbling)

4 instantiations

[LL20a,LL20b,LLL22,HLL24]

Part II. More

- ABE for circuits of unbounded depth from lattices
 [HLL23]
- first systematic study of optimal succinctness and efficiency for ABE [JLL23,L24]

Part I. General Paradigm

Somewhat technical, but less so than the sum of all those separate talks.

ABE ← Functional Encryption

$$\operatorname{ct}_{\mathbf{x}}(\mu) = \operatorname{fct}(y) \quad \mathbf{y} = (\mathbf{x}, \mu)$$

FE Security. Hides everything about y beyond f'(y).

Idea.

- Decompose into two phases (low-degree + high-degree).
- Use **FE** on **low-degree** only.

To solve this problem, simply solve that harder problem first!

Linear Garbling (Roughly) [Y82,Y86,AIK11,IW14]

- 1. Garble $(f, \delta) \rightarrow (L_1, ..., L_m)$
 - affine (low-degree) functions of x (label functions)
 - coefficients (L's) contain δ , randomness

Protect δ , randomness? Protect this process!

2.
$$\ell_1 = L_1(x) = \boxed{\langle (1, x), L_1 \rangle}, \ldots, \quad \ell_m = L_m(x) = \boxed{\langle (1, x), L_m \rangle}$$
• labels

not hidden

3. Eval
$$(f(x), \ell_1, ..., \ell_m) \rightarrow \delta f(x)$$

• high-degree in x

" ℓ 's reveal nothing about δ beyond $\delta f(x)$ "

Inner-Product FE (Roughly) [ABDP15]

ABE ← IPFE ∘ Garbling

$$\operatorname{sk}_f = \operatorname{isk}(\boldsymbol{L}_1), \dots, \operatorname{isk}(\boldsymbol{L}_m)$$
 (for δ)

$$\frac{\text{IPFE}}{\text{decryption}} \blacktriangleright \widehat{\delta f(x)} = L_1(x), \dots, L_m(x) \xrightarrow{\text{garbling}} \delta f(x)$$

$$\operatorname{ct}_{\boldsymbol{x}}(\mu) = \operatorname{ict}(1, \boldsymbol{x}), \ \delta \oplus \mu$$
remove OTP
when $f(\boldsymbol{x}) = 1$

formalize properties that compose well

Composition of Security. (wishful)

- IPFE only labels revealed
- garbling only $\delta f(x)$ revealed
- δ is OTP for μ when f(x) = 0

Security composition is tricky and sensitive to formalism.

Pairing Groups

- G_1, G_2, G_T groups of order p (prime) $G_i = \langle g_i \rangle$, additive, $[a]_i \stackrel{\text{def}}{=} ag_i$
- $e: G_1 \times G_2 \to G_T$ non-degenerate bilinear map $e(ag_1,bg_2) = abg_T$, $[a]_1[b]_2 = [ab]_T$

What is it good for cryptography?

Pairing = one-time, controlled multiplication.

✓ Easy (
$$[a]_1, b$$
) $\mapsto [ab]_1$ and ($[a]_1, [b]_2$) $\mapsto [ab]_T$.

DDH. $[a, b, ab]_1 \approx [a, b, c]_1$ for $a, b, c \stackrel{\$}{\leftarrow} \mathbb{Z}_p$.

- **X** Hard ($[\![a]\!]_1$, $[\![b]\!]_1$) $\mapsto [\![ab]\!]_T$.
- Provides **some** protection for x in $[x]_i$.
- Builds IPFE (full protection).

IPFE in [LL20a]

Pairing-Based.

Recall. Garbling Eval after IPFE Dec.

only linear operations with $[\cdot]_T$?

$$\operatorname{Dec}(\operatorname{isk}(\llbracket v \rrbracket_2), \operatorname{ict}(\llbracket u \rrbracket_1)) = \llbracket u^\top v \rrbracket_{\operatorname{T}}$$

Function-Hiding.* (hides u, v)

Fact. Such IPFE can be built from k-Lin (standard, static assumption). [ALS16,W17,LV16,L17]

$$\left(\operatorname{impk}, \{\operatorname{isk}(\boldsymbol{v}_{j0})\}_{j}, \{\operatorname{ict}(\boldsymbol{u}_{i0})\}_{i}\right) \approx \left(\operatorname{impk}, \{\operatorname{isk}(\boldsymbol{v}_{j1})\}_{j}, \{\operatorname{ict}(\boldsymbol{u}_{i1})\}_{i}\right)$$

Can compute $I \times J$ inner products $u_{i?}^{\mathsf{T}} v_{j?}$.

if
$$u_{i0}^{\mathsf{T}} v_{j0} = u_{i1}^{\mathsf{T}} v_{j1}$$
 for all i, j .

* not the full story, but good enough for now

Garbling in [LL20a]

More Linear Properties.

- 1. Garble $(f, \delta; \mathbf{r}) \rightarrow (\mathbf{L}_1, ..., \mathbf{L}_m)$ linear in (δ, \mathbf{r})
- 2. $\ell_j = \langle (1, \mathbf{x}), \mathbf{L}_j \rangle$
- 3. Eval $(f, \mathbf{x}, \ell_1, ..., \ell_m)$ linear in $(\ell_1, ..., \ell_m)$

Fact. Such garbling for arithmetic branching programs (ABP) exists. [IK00,IK02,IW14]

ABP = determinant of certain matrices

Security.* (distribution of ℓ_1, \dots, ℓ_m)

Point. This leads to localized label simulation.

- 1. ℓ_2, \dots, ℓ_m are jointly random.
- 2. ℓ_1 is uniquely determined by $f, x, \delta f(x), \ell_2, ..., \ell_m$ due to **evaluation correctness**, i.e.,

Eval
$$(f, x, \ell_1, \ell_2, ..., \ell_m) = \delta f(x),$$

a linear constraint on ℓ_1 .

* not the full story, but good enough for now

Instantiating the Paradigm in [LL20a]

 $\operatorname{ct}_{\mathbf{x}}(\mu) = \operatorname{ict}(\llbracket 1, \mathbf{x} \rrbracket_1)$

$$\mathrm{sk}_f = \mathrm{isk}(\llbracket \boldsymbol{L}_1 \rrbracket_2), \dots, \mathrm{isk}(\llbracket \boldsymbol{L}_m \rrbracket_2)$$

$$\stackrel{\mathsf{IPFE}}{=} \delta \widehat{f(x)} = \llbracket \ell_1 \rrbracket_{\mathsf{T}}, \dots, \llbracket \ell_m \rrbracket_{\mathsf{T}} \xrightarrow{\mathsf{Eval}} \llbracket \delta f(x) \rrbracket_{\mathsf{T}}$$

Selective Security in [LL20a]

```
✓ independent of \delta
                                               ict (1, x)
ict(1,x)
                                                                                              ict (1, x)
                                                                           garbling
                               IPFE
isk ( L_1 )
                                              isk (\ell_1, \mathbf{0})
                                                                                             isk (\ell_1, \mathbf{0})
isk ( L_2 )
                                              isk (\ell_2, \mathbf{0})
                                                                                             isk (\ell_2, \mathbf{0})
isk ( \boldsymbol{L}_m )
                                              isk (\ell_m, \mathbf{0})
                                                                                             isk (\ell_m, \mathbf{0})
                                                                                             \ell_2, ..., \ell_m = \$
                                             \ell_i = \langle (1, \mathbf{x}), \mathbf{L}_i \rangle
```

solve

for ℓ_1

Problem with Adaptive Security in [LL20a]

Fixing Adaptive Security in [LL20a]

many steps *

✓ can be generated ✓ independent of
$$\delta$$
 isk (0, 0 1)

isk (
$$\ell_2$$
, **0** 0)

isk (
$$\ell_m$$
, **0** 0)

$$\ell_2, \dots, \ell_m = \$$$

ict
$$(1, x \ell_1)$$

solve
$$\operatorname{Eval}(f, \boldsymbol{x}, \boldsymbol{\ell}_1, \boldsymbol{\ell}_2, \dots, \boldsymbol{\ell}_m) = 0$$
 for $\boldsymbol{\ell}_1$

^{*} untold part of garbling security

Multi-Ciphertext Security in [LL20a]

X Garbling security breaks if label functions are reused!

ABE for Uniform in [LL20a]

Previous. input length of f is fixed (non-uniform model)

Now. more flexible (e.g., NFA)

- sk_{Γ} for regular expression Γ (works with *all possible* input length)
- ct_x for input string x (works with *all possible* reg.exp. size)

Same Paradigm.

- garbling for NFA, NL
- <u>use IP</u>FE to compute garbling
- proof guided by same idea simple idea, complex execution, IPFE helpful in managing proof

Tweaks. garbling size $\Theta(|\Gamma| \cdot |x|)$

- $sk = \Theta(|\Gamma|)$ many isk's
- ct = $\Theta(|x|)$ many ict's

make every pair of decryption useful!

Achievements of [LL20a]

ABE for Non-Uniform. ABP, adaptive, standard assumptions.

- **Previous.** puts bound on program size upon Setup [LOSTW10], or non-adaptive [GSPW06], or non-standard assumptions [LW12].
- Previous, Concurrent.

for Boolean formula / branching programs [KW19,GW20].

ABE for Uniform. (N)L, (linear-size) N/DFA, adaptive, standard assumptions.

- Previous. for DFA,
 non-adaptive or large components or non-standard assumptions
 [W12,A14,AMY19,GWW19].
- **Concurrent.** [GW20] for DFA, same achievements; for NFA, non-adaptive.

^{*} comparison only with pairing-based schemes

Power of Paradigm Exhibited by [LL20a]

one method solving many open problems (pairing-based)

- adaptive ABE for arithmetic computation / DFA
- ABE for NFA

almost the end game of adaptive standard ABE from pairing

- small remaining gap between selective/adaptive ABE (arithmetic span program vs ABP)
- **still the only** known adaptive ABE for NFA, L, NL (for ABP, improved in [LL20b])

X Size of garbling with our security notion is tightly related to ABP size. [Luo20汉]

reused in the future

- next-up in this talk
- same IPFE / garbling used for AB-FE for ABP, L [DP21,DPT22]

Remember Succinctness?

$$|\operatorname{sk}_f| < |f|$$
?

$$\operatorname{sk}_f = \operatorname{isk}(\boldsymbol{L}_1), \dots, \operatorname{isk}(\boldsymbol{L}_m)$$

- has m = |f| objects (isk's)
- has $\geq m$ bits of (garbling) randomness

must hide garbling randomness

$|\operatorname{ct}_x| < |x|$?

$$\operatorname{ct}_{\boldsymbol{x}}(\mu) = \operatorname{ict}(1, \boldsymbol{x})$$

• IPFE (hiding) security \Rightarrow |ict| \geq |x|

nothing to hide

isk
$$(\ell_1, \mathbf{0})$$
, ..., isk $(\ell_m, \mathbf{0})$
 \approx
(x then f)

(non-hiding – more difficult for proof)

use non-hiding isk to bind to x

no hiding required for "x then f" case

Using IPFE with Succinct Keys

$$\operatorname{ct}_f(\mu) = \operatorname{ict}(\boldsymbol{L}_1), \dots, \operatorname{ict}(\boldsymbol{L}_m)$$

$$sk_x = isk(1, x)$$

$$√ |isk| = 0(1)$$

♠ no hiding

CP-1-ABE

Two values hardwired during proof.

$$isk(1, x, \ell_1)$$

cannot hardwire ℓ_1 by changing vector

Solution. IPFE with *simulation security*. (stronger formulation compatible with proof)

IPFE with Simulation Security

 impk $\{\operatorname{isk}(\ oldsymbol{v}_j\)\}$ $\operatorname{ict}(\ oldsymbol{u}\)$ \thickapprox $\{\operatorname{isk}(\ oldsymbol{v}_j\)\}$

input to simulator

$$\{\widetilde{\operatorname{isk}}(v_j \mid \bot)\}$$

$$\widetilde{\operatorname{ict}} \left(\perp \mid \{ \boldsymbol{u}^{\mathsf{T}} \boldsymbol{v}_j \}_{j < J_1} \right)$$

$$\{\widetilde{isk}(v_j \mid u^\mathsf{T}v_j)\}$$

At every moment, (adaptive)
input to simulator is
whatever is intended
to be revealed.

Stronger Formulation. [LL20b]

1. Can simulate up to *T* ciphertexts.

(*T* tunable at Setup, affects component sizes)

2. Can do/undo simulation for any ict in the presence of other ict's.

Constructions. [LL20b]

- Generically from any selectively secure IPFE.
- Direct by modifying [ALS16] (better efficiency).

Using Simulation-Secure IPFE in [LL20b]

$$\operatorname{ct}_f(\mu) = \operatorname{ict}(\boldsymbol{L}_1), \dots, \operatorname{ict}(\boldsymbol{L}_m)$$

$$sk_x = isk(1, x)$$

✓
$$|isk| = O(T)$$
 with $T = 2$

many steps

(f then x)

$$\widetilde{isk}(1, \boldsymbol{x}|\boldsymbol{\ell}_1)$$

Multi-key security? KP-ABE?

- CP-1-ABE + dual system [Wo9] ⇒ KP-ABE
- KP-ABE \Longrightarrow KP-1-ABE (trivial)
- KP-1-ABE + dual system \Longrightarrow CP-ABE*

^{*} a factor of 2 shaved off in sizes compared to usual implementation of dual system, somehow...

Summary of [LL20b]

Achievements in Succinct ABE. ABP, adaptive, standard assumptions.

- Part with x is Succinct. ct_x in KP-ABE, sk_x in CP-ABE.
- **Previous.** only (natively) for Boolean computation, non-adaptive or non-standard assumptions [A16,ZGTCLQC16].
- Concurrent.

for Boolean formulae [AT20] only 1 fewer group element in ct for KP.

What about the Paradigm? (not fully within paradigm)

• "Ablation Study" of Roles of IPFE. By comparing [LL20a] with literature...

computing garbling (new IPFE); rerandomizing garbling (dual system).

• Learn in Abstraction, Improve by Breaking It. paradigm = bridge to reach the goal?

Moving Beyond Noiseless Garbling

Part with x is Succinct. ct_x in KP-ABE, sk_x in CP-ABE. Part with f?

Fact. Size of noiseless linear garbling tightly related to span program size [B84,M87,BDHM92,KW93] (linear algebraic computation, low-depth).

Noiseless

- cannot make *f*-part **succinct**
- does not handle high depth

Let's try allowing noises!

Attribute Encoding from Lattices [BGGHNSVV14,GV15]

m n

$$A = (A_1, ..., A_{|x|}) \in \mathbb{Z}_q^{n \times |x|m} \xrightarrow{\text{EvalC}} A_C \in \mathbb{Z}_q^{n \times m}$$

m

$$s^{\mathsf{T}}(A - x \otimes G) + e^{\mathsf{T}} \xrightarrow{\text{EvalCX}} for C \text{ and } x$$

$$s^{\mathsf{T}}(A_{\mathcal{C}} - \mathcal{C}(x) \cdot G) + e_{\mathcal{C}}^{\mathsf{T}}$$

- homomorphic encoding
- sizes depend on depth d of C,
 not size
- noise growth is **exponential** in d

* What is *G*?

Some fixed, publicly known matrix – details not needed for now.

 $= \left(\boldsymbol{s}^{\top} (\boldsymbol{A}_1 - \boldsymbol{x}[1] \cdot \boldsymbol{G}) + \boldsymbol{e}_{\scriptscriptstyle 1}^{\top}, \dots \right)$

Noisy Linear Garbling from Attribute Encoding

Public Parameters. *A*, short *z*

Think binary x.

Labels.
$$s^{\top}(A - x \otimes G) + e^{\top} = s^{\top}(A - x \otimes G) = c^{\top}$$
 (wavy = noises)

Evaluation.

1.
$$c^{\mathsf{T}} \xrightarrow{\text{EvalCX}} \underline{s^{\mathsf{T}}(A_C - C(x) \cdot G)} = c_C^{\mathsf{T}}$$

2. output $c_C^{\mathsf{T}} z$

=
$$\underline{s}^{\mathsf{T}} A_C z - C(x) \cdot \underline{s}^{\mathsf{T}} G z$$
 { $C(x) = 0$, then just the secret $C(x) = 1$, then $\underline{s}^{\mathsf{T}} G z$ is OTP to hide secret *

Changes.

- " $P(C,x) = \neg C(x)$ " recover secret when C(x) = 0
- secret is $\mathbf{s}^{\mathsf{T}} \mathbf{A}_C \mathbf{z}$

* not the full story, but good enough for now

Using Noisy Linear Garbling in [LLL22]

$$|\operatorname{ct}_f| = O(|\mathbf{x}|^2) < |f|$$

$$\operatorname{ct}_f(\mu) = \operatorname{ict}([\![\mathbf{s}^{\mathsf{T}} \mathbf{A}_1 + \mathbf{e}_1^{\mathsf{T}}, \ \mathbf{s}^{\mathsf{T}} (\mathbf{A}_1 - \mathbf{G}) + \mathbf{e}_1^{\mathsf{T}}]\!]_1), \dots$$

✓ polynomial noise for log-depth circuits (formulae)

 $|\mathbf{sk}_{x}| = 0(1)$ $\mathbf{sk}_{x} = i\mathbf{sk}(r[\![\neg x, x]\!]_{2})$

generic group model + stronger IPFE security

- selects $\mathbf{s}^{\mathsf{T}} \mathbf{A}_1$ or $\mathbf{s}^{\mathsf{T}} (\mathbf{A}_1 \mathbf{G})$ etc.
- DDH-style rerandomization with r

Generic Group Model [597,M05]

Standard Model.

- arbitrary computation on group element represented in bits
- certain computational problem is hard

Generic Group Model. | intuitive although strong

- only operations via group-theoretic interfaces
 - addition, negation, zero-testing
 - pairing
- (equivalently) adversary capability

⇒ easier to write proofs = zero-test any **linear** function of $([1, w_1]_1 \otimes [1, w_2]_2, [w_T]_T)$

more control of adversarial behavior

Saw $w_1 = [a]_1, w_2 = [b]_2, w_T = [c]_T.$ Define L(r, s) = r - s. Ask $L(w_1 \otimes w_2, w_T) \stackrel{?}{=} 0$.

Yes/no. (Tests whether ab = c.)

Very Strong IPFE Simulation Security of [LLL22]

Generic Group Model.

"All you can do is to zero-test linear functions of pairing results (and target group elements)."

IPFE Simulation in GGM.

"All you can do is to **zero-test** linear functions of **inner products** (and key vectors)."

√ proven for [ABDP15]

 \checkmark rerandomization with r now works

Summary of [LLL22]

Doubly Succinct CP-ABE. for Boolean **formulae** (log-depth circuits)

- $|\operatorname{sk}_{x}| = O(1) < |x|$ and $|\operatorname{ct}_{f}| = O(|x|^{2}) < |f|$
- first ABE with non-trivial double succinctness
- Previous. [AY20] CP-ABE from pairing + lattices
 [AWY20] —"— with [LL20a] IPFE (not doubly succinct)

More Succinct KP-ABE. for Boolean circuits with $|sk_C| = O(1)$

- **Previous.** [BGGHNSVV14] with $|sk_C| = poly(d)$
- Later. [CW23] from just LWE

Versality of Paradigm. Can combine pairing and lattices.

Lattices, not Pairing

Why not pairing?

- not post-quantum secure
- noise must be polynomially bounded

Learning with Errors (LWE).

protection for s

- presumably post-quantum
- OK with somewhat large noise
- builds some IPFEIPFE insufficient for ABE

Rerandomization with Lattice-Based IPFE

$$\operatorname{ct}_f(\mu) = \operatorname{ict}(SA_1, S(A_1 - G)), \dots$$

$$\operatorname{garbling randomness}_{\text{easier to fix}}$$

$$\operatorname{decryption} r^{\mathsf{T}}S(A_1 - x[1] \cdot G) + \operatorname{noise}_{not \ good \ enough \ from \ existing \ lattice-based \ IPFE}$$

$$\operatorname{sk}_x = \operatorname{isk}(r^{\mathsf{T}}(\neg x, x))$$

$$\operatorname{Goal. \ lattice-based \ IPFE \ giving \ good \ noises}$$

Lattice Trapdoors [MP12] and Evasive LWE [W22,T22]

$$"K = B^{-1}(P)"$$

trapdoor of B = information about B for solving BK = P for small K, given any P

$$(s^{\top}B + e^{\top}) \cdot B^{-1}(P) = s^{\top}P + e^{\top}K$$

$$\underline{s^{\top}B} \cdot B^{-1}(P) = \underline{s^{\top}P}$$
• controlled multiplication
• makes LWE fail
• (no protection for s)
• (no protection for s)
• $\underline{s^{\top}B} \cdot B^{-1}(0)$ small
• $\underline{s^{\top}B} \cdot B^{-1}(0)$ random

$$\underline{\boldsymbol{s}}^{\mathsf{T}}\underline{\boldsymbol{B}}\cdot\boldsymbol{B}^{-1}(\boldsymbol{0})$$
 small $\widehat{\boldsymbol{\$}}\cdot\boldsymbol{B}^{-1}(\boldsymbol{0})$ random

Evasive LWE. (conditional protection for *s*)

"The only meaningful way to use $B^{-1}(P)$ is to multiply it to S^TB and ignore noise correlation."

if
$$(B, P, s^{T}B + e_{B}^{T}, s^{T}P + e_{P}^{T}) \approx (B, P, \$, \$)$$

then $(B, P, s^{T}B + e_{B}^{T}, B^{-1}(P)) \approx (B, P, \$, B^{-1}(P))$

Evasive LWE and Evasive IPFE [HLL24]

Achievements of [HLL24]

Lattice-Based CP-ABE. for circuits (using garbling from [BGGHNSVV14])

- from LWE + evasive LWE
- Previous. [BV20] no security proof
 [W22] from LWE + tensor LWE + evasive LWE

ABE for Uniform. for DFA, L (using garbling from [LL20a])

- first lattice-based public-key ABE for uniform
- Previous. [AS17,W22] against bounded collusion
 [AMY19] secret-key ABE for NFA
 [W22] no security proof

Summary of Paradigm

ABE ← IPFE ∘ Garbling

Composition of Security.

- IPFE only rerandomized garblings revealed
- assumption garblings are properly rerandomized
- garbling secret/message hidden if unauthorized

Modular. Hides most *raw* usage of computational

assumptions into IPFE and garbling security.

Powerful. Achieves various ABE with **better** properties.

Versatile. Works with pairing, lattice, or pairing + lattice.

Open Questions from Part I

- Gap between selective/adaptive ABE from static pairing assumptions (arithmetic span program vs ABP)
- **CP**-ABE for circuits from **falsifiable** lattice assumptions
- ABE for **DFA** from **falsifiable** lattice assumptions (Evasive LWE is non-falsifiable.)

Part II. More

Nothing technical now, just the results and the messages.

Bounded and Unbounded (KP-ABE)

Recall.
$$s^{T}(A - x \otimes G) + e^{T} \xrightarrow{\text{EvalCX}} s^{T}(A_{C} - C(x) \cdot G) + e^{T}_{C}$$
noise growth **exponential** in depth d of C

computation in \mathbb{Z}_q – only works when $d = O(\log q)$

- *q* is often chosen upon Setup.
- q must be chosen upon Enc.
 - ct_x contains elements in \mathbb{Z}_q (attribute encoding).
 - This forces $d \le |ct|$, so ct_x cannot work with sk_C if d > |ct|, even if C(x) = 0.
 - "ct_x places an upper bound on d," (depth-bounded) even though x has nothing to do with d.

WANT. No upper bound on d from mpk, ct ("depth-unbounded").

Unbounded Evaluation for Attribute Encoding

Idea. (similar to fully homomorphic encryption)

- Start from somewhat small noise.
- Perform some evaluation. Noise becomes somewhat large.
- Reduce noise to somewhat small before it overflows.
- Rinse and repeat.

Achievements and Open Questions [HLL23]

KP-ABE for circuits of unbounded depth.

- long-standing open problem
- from circular LWE + evasive circular LWE (circular = encrypt s using s)
- **Previous.** [BGGHNSVV14] for bounded depth
- **Concurrent.** [CW23] for bounded depth with $|sk_C| = O(1)$

Related Primitives. (with depth bound removed, from circular LWE)

Open Questions. depth-unbounded KP-ABE from falsifiable (no "evasive") lattice assumptions

Dream and Actual Versions of ABE [JLL23]

Previous. ABE for ABP, NL, circuits...

ABE for RAM (best model for real-world programs)

$$|{
m sk}_f|=0$$
 (1) $|{
m ct}_{\chi}|=0$ (1) $|{
m ct}_{\chi}|=0$ (1) $|{
m ct}_{\chi}|=0$ possible that $T_{{
m RAM},f,\chi}<|x|$ (think binary search)

$ sk_f $	$ ct_x $	$T_{ m Dec}$
0(1)	0(1)	O(T + f + x)
f + 0(1)	0(1)	O(T+ x)
0(1)	x + 0(1)	O(T+ f)
f + 0(1)	x + 0(1)	O(T)

Are we (am I) stupid, or is it some necessary evil?

YOU CAN (NOT) OPTIMIZE [L24]

Theorem. For any secure ABE supporting P(f = i, x = R) = R[i], it holds that

$$|\operatorname{ct}_{x}| \cdot T_{\operatorname{Dec}} = \Omega(|x|).$$

Similar trade-off lower bound holds between $|sk_f|$ and T_{Dec} .

 \Rightarrow Schemes of [JLL23] are **Pareto-optimal**.

Fact. Schemes of [JLL23] can be modified into

$$|\operatorname{sk}_f| = |f|^{\alpha} + \operatorname{O}(1), \quad |\operatorname{ct}_{\chi}| = |\chi|^{\beta} + \operatorname{O}(1),$$

$$T_{\operatorname{Dec}} = \operatorname{O}\left(T \times (|f|^{1-\alpha} + |\chi|^{1-\beta})\right),$$
for any constants $0 < \alpha, \beta < 1$.

 \Rightarrow The trade-off lower bound is **tight** for T = O(1).

Achievements of [JLL23,L24]

New Agenda.

- multi-objective optimization
- quest for Pareto-optimality

Trade-Off Lower Bounds for ABE.

- first such bounds
- **Message.** Maybe succinctness is not worth it if we must pay dearly for each decryption?

Constructions.

- down-to-constant optimization
- Pareto-optimal

Open Questions from [JLL23,L24]

• fully pin down the Pareto frontier for general *T*

• Is "f, x verbatim for free" the correct cost model?

 $Dec(mpk, sk'_f, ct'_x)$

from verbatim-for-free model. $\operatorname{ct}_{\chi}' = (x,\operatorname{ct}_{\chi})$ cannot achieve $T_{\operatorname{Dec}} = \operatorname{O}(T)$ with $|\operatorname{ct}_{\chi}'| = |x| + \operatorname{O}(1)$.

other implementation achieving the goal? (ct'_x encoding x in some clever way)

Acknowledgments

advisors.

Rachel, Stefano.

other and former committee members.

Paul Beame, Gaku Liu, Anup Rao, Cynthia Vinzant.

coauthors.

Ivan Damgård, Sabine Oechsner, Peter Scholl, Mark Simkin, Shengyu Zhao, Tingfung Lau, Eric I-Chao Chang, Yan Xu, Rachel Lin, Hanjun Li, Junqing Gong, Hoeteck Wee, Aayush Jain, Daniel Wichs, Yao-Ching Hsieh, Yevgeniy Dodis.

CSE members, former teachers, cohorts, friends. mom, dad.

