ad hoc (decentralized) broadcast, trace, and revoke 自组型(去中心化)广播、追踪、撤销。

罗辑

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

No mathematical idea has ever been published in the way it was discovered. Techniques have been developed and are used, if a problem has been solved, to turn the solution procedure upside down, or if it is a larger complex of statements and theories, to turn definitions into propositions, and propositions into definitions, the hot invention into icy beauty.

—— Hans Freudenthal [F]

No mathematical idea has ever been published in the way it was discovered. Techniques have been developed and are used, if a problem has been solved, to turn the solution procedure upside down, or if it is a larger complex of statements and theories, to turn definitions into propositions, and propositions into definitions, the hot invention into icy beauty.

—— Hans Freudenthal [F]

"数学家收起了火热的思考,留下了冰冷的美丽."

-----杨晶

++启发式、自然思考式; --展示式 (学术报告的常见模式);

No mathematical idea has ever been published in the way it was discovered. Techniques have been developed and are used, if a problem has been solved, to turn the solution procedure upside down, or if it is a larger complex of statements and theories, to turn definitions into propositions, and propositions into definitions, the hot invention into icy beauty.

—— Hans Freudenthal [F]

"数学家收起了火热的思考,留下了冰冷的美丽."

----杨晶

++启发式、自然思考式; --展示式 (学术报告的常见模式);

- 传统叛徒追踪
- 动机、问题

No mathematical idea has ever been published in the way it was discovered. Techniques have been developed and are used, if a problem has been solved, to turn the solution procedure upside down, or if it is a larger complex of statements and theories, to turn definitions into propositions, and propositions into definitions, the hot invention into icy beauty.

—— Hans Freudenthal [F]

"数学家收起了火热的思考,留下了冰冷的美丽."

----杨晶

++启发式、自然思考式; --展示式 (学术报告的常见模式)

- 传统叛徒追踪
- 动机、问题
- 推演定义
- 两款构造
- 下界证明

No mathematical idea has ever been published in the way it was discovered. Techniques have been developed and are used, if a problem has been solved, to turn the solution procedure upside down, or if it is a larger complex of statements and theories, to turn definitions into propositions, and propositions into definitions, the hot invention into icy beauty.

—— Hans Freudenthal [F]

"数学家收起了火热的思考,留下了冰冷的美丽."

-----杨晶

++启发式、自然思考式; --展示式 (学术报告的常见模式)

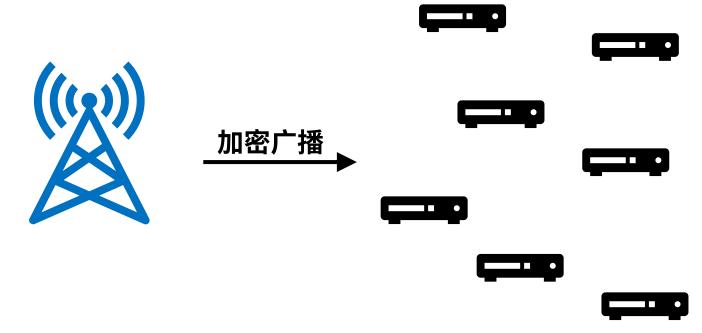
- 传统叛徒追踪
- 动机、问题
- 推演定义
- 两款构造
- 下界证明
- 故事汇

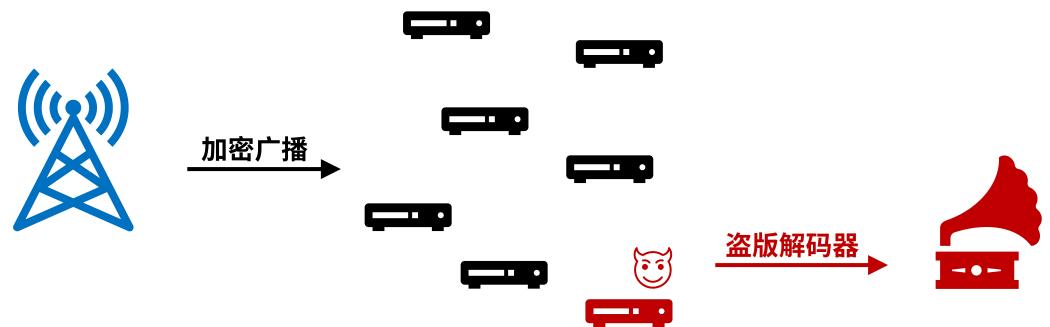
No mathematical idea has ever been published in the way it was discovered. Techniques have been developed and are used, if a problem has been solved, to turn the solution procedure upside down, or if it is a larger complex of statements and theories, to turn definitions into propositions, and propositions into definitions, the hot invention into icy beauty.

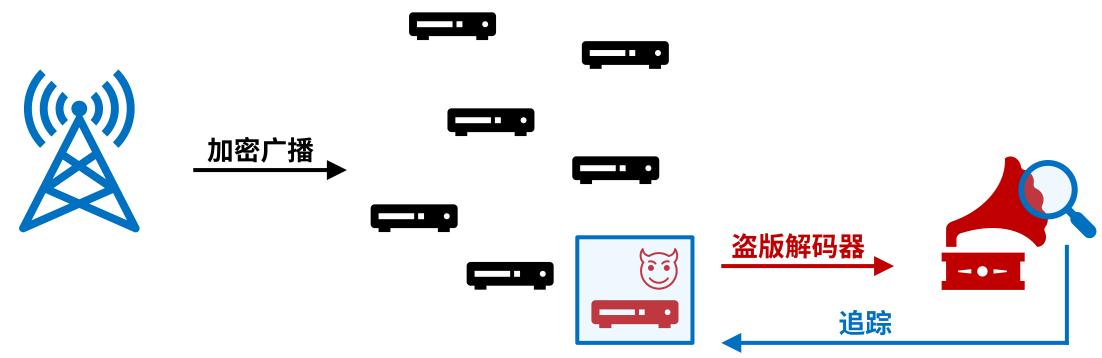
—— Hans Freudenthal [F]

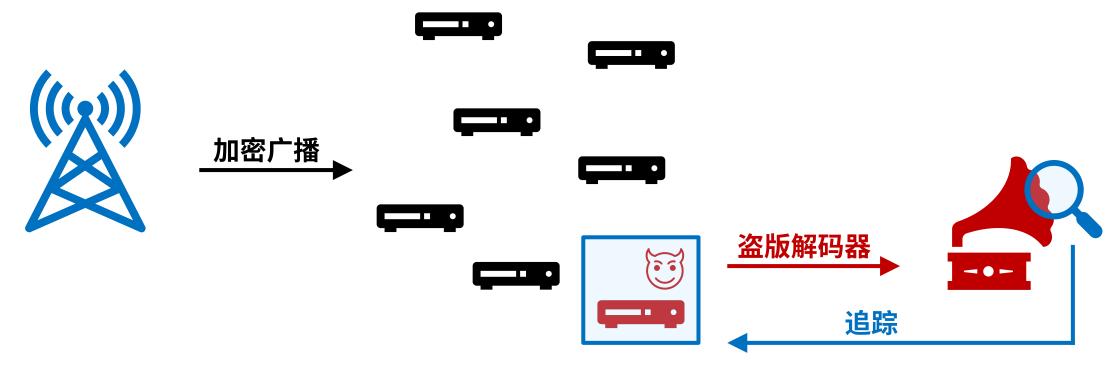
"数学家收起了火热的思考,留下了冰冷的美丽."

----杨晶

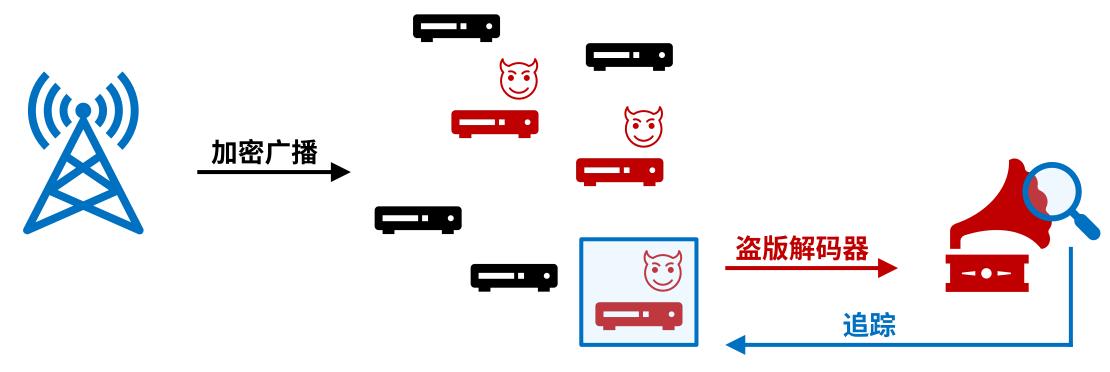








- 只要盗版解码器让加密不安全,就能找出至少一个叛徒
- 永远不指控无辜订户



- 只要盗版解码器让加密不安全,就能找出至少一个叛徒
- 永远不指控无辜订户
- 上述两条在任意多个叛徒合谋时也成立

 $Gen(1^N) \rightarrow pk, sk_1, ..., sk_N$

$$Gen(1^N) \rightarrow pk, sk_1, ..., sk_N$$

Enc(pk,
$$\mu \in \{0,1\}^{\lambda}$$
) \rightarrow ct

$$Gen(1^N) \rightarrow pk, sk_1, ..., sk_N$$

Enc(pk,
$$\mu \in \{0,1\}^{\lambda}$$
) \rightarrow ct

$$Dec(sk_i, ct) \rightarrow \mu$$

$$Gen(1^N) \rightarrow pk, sk_1, ..., sk_N$$

Enc(pk,
$$\mu \in \{0,1\}^{\lambda}$$
) \rightarrow ct

$$Dec(sk_i, ct) \rightarrow \mu$$

$$\operatorname{Trace}^{D}(\operatorname{pk}, 1^{1/\varepsilon^{*}}) \to i^{*} \in [N] \cup \{\bot\}$$

$$Gen(1^N) \rightarrow pk, sk_1, ..., sk_N$$

Enc(pk,
$$\mu \in \{0,1\}^{\lambda}$$
) \rightarrow ct

$$Dec(sk_i, ct) \rightarrow \mu$$

$$Gen(1^N) \rightarrow pk, sk_1, ..., sk_N$$
 谁来运行 Gen?

Enc(pk,
$$\mu \in \{0,1\}^{\lambda}$$
) \rightarrow ct

$$Dec(sk_i, ct) \rightarrow \mu$$

$$\operatorname{Gen}(1^N) \to \operatorname{pk}, \operatorname{sk}_1, \dots, \operatorname{sk}_N$$

谁来运行 Gen?

Enc(pk, $\mu \in \{0,1\}^{\lambda}$) \rightarrow ct

 $Dec(sk_i, ct) \rightarrow \mu$

叛徒追踪里有谁?

- 广播提供商
- 订户(使坏者)

$$Gen(1^N) \rightarrow pk, sk_1, ..., sk_N$$

Enc(pk, $\mu \in \{0,1\}^{\lambda}$) \rightarrow ct

 $Dec(sk_i, ct) \rightarrow \mu$

谁来运行 Gen?

叛徒追踪里有谁?

- 广播提供商
- 订户(使坏者)

它要保护谁的利益?

广播提供商.

$$Gen(1^N) \rightarrow pk, sk_1, ..., sk_N$$

$\operatorname{Enc}(\operatorname{pk}, \mu \in \{0,1\}^{\lambda}) \to \operatorname{ct}$

$$Dec(sk_i, ct) \rightarrow \mu$$

谁来运行 Gen?

叛徒追踪里有谁?

- 广播提供商
- 订户(使坏者)

它要保护谁的利益?

广播提供商.

广播提供商运行 Gen.

广播提供商运行 $Gen(1^N) \rightarrow pk, sk_1, ..., sk_N$

广播提供商运行 $Gen(1^N) \to pk$ $sk_1, ..., sk_N$ 运行 Gen 的人掌握所有私钥

广播提供商运行 $Gen(1^N) \to pk$ $sk_1, ..., sk_N$ 运行 Gen 的人掌握所有私钥

• 传统定义: 仅为广播提供商设计、中心化

• 其他用法: 不适宜

广播提供商运行 $Gen(1^N) \to pk$ $sk_1, ..., sk_N$ 运行 Gen 的人掌握所有私钥

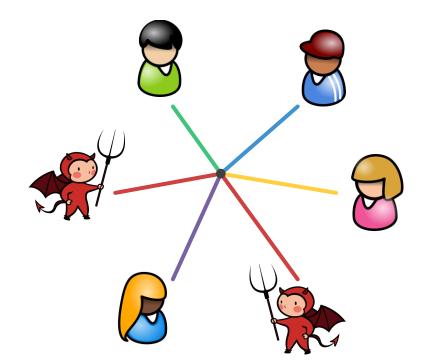
• 传统定义: 仅为广播提供商设计、中心化

• 其他用法: 不适宜

广播提供商运行 $Gen(1^N) \to pk$ $sk_1, ..., sk_N$ 运行 Gen 的人掌握所有私钥

• 传统定义: 仅为广播提供商设计、中心化

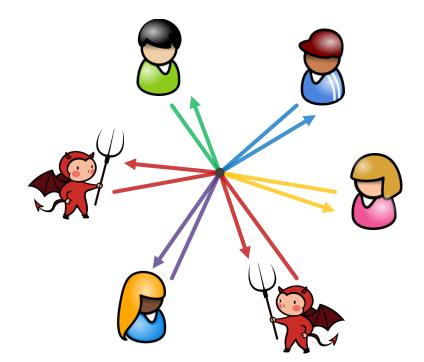
• 其他用法: 不适宜



广播提供商运行 $Gen(1^N) \to pk$ $sk_1, ..., sk_N$ 运行 Gen 的人掌握所有私钥

• 传统定义: 仅为广播提供商设计、中心化

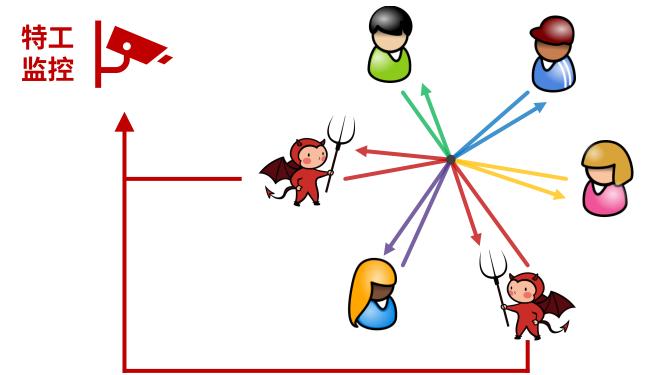
• 其他用法: 不适宜



广播提供商运行 $Gen(1^N) \to pk$ $sk_1, ..., sk_N$ 运行 Gen 的人掌握所有私钥

• 传统定义: 仅为广播提供商设计、中心化

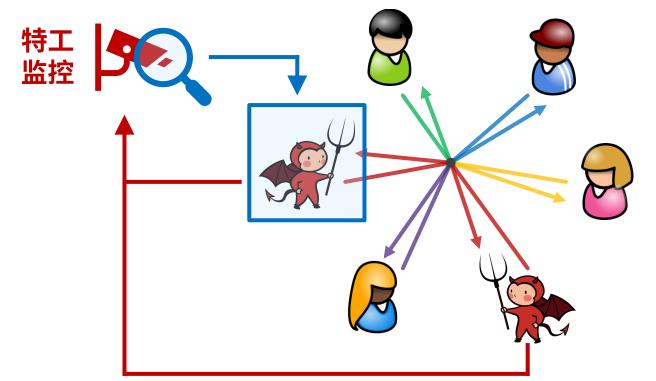
• 其他用法: 不适宜



广播提供商运行 $Gen(1^N) \to pk$ $sk_1, ..., sk_N$ 运行 Gen 的人掌握所有私钥

• 传统定义: 仅为广播提供商设计、中心化

• 其他用法: 不适宜



• 可追踪叛徒

- 可追踪叛徒 adversary
- 任何人都可能是使坏者 不应掌握他人的密钥

- 可追踪叛徒 adversary
- 任何人都可能是使坏者
- 入群方便

不应掌握他人的密钥

最好无需交互

- 可追踪叛徒
- adversary
- 任何人都可能是使坏者
- 入群方便

 - 最好无需交互

不应掌握他人的密钥

需要某种**去中心化**的叛徒追踪

• 可追踪叛徒

- adversary
- 任何人都可能是使坏者
- 入群方便

• • • • • •

不应掌握他人的密钥

最好无需交互

需要某种**去中心化**的叛徒追踪

<u>ad hoc</u>

称作"自组型叛徒追踪"

如何恰当定义自组型叛徒追踪?

如何恰当定义自组型叛徒追踪?

从什么假设可以构造它?效率如何?

如何恰当定义自组型叛徒追踪?

从什么假设可以构造它?效率如何?

它效率的下界是什么?

每个用户生成 自己的公私钥对 Gen() → pk, sk

每个用户生成 自己的公私钥对 Gen() → pk, sk

$$\operatorname{Enc}(\{\operatorname{pk}_j\}_{j\in[N]},\mu\in\{0,1\}^\lambda)\to\operatorname{ct}$$

每个用户生成 自己的公私钥对 Gen() → pk, sk

Enc
$$\{pk_j\}_{j\in[N]}$$
 $\mu\in\{0,1\}^{\lambda}$) \to ct 加密之前 收件人列表无限制

每个用户生成 自己的公私钥对 Gen() → pk, sk

·目标是 ·叛徒追踪·

每个用户生成 自己的公私钥对 Gen() → pk, sk

·目标是 ·叛徒追踪·

$$\operatorname{Enc}(\{\operatorname{pk}_j\}_{j\in[N]},\mu\in\{0,1\}^\lambda)\to\operatorname{ct}$$
 加密之前 收件人列表无限制

自然具有 广播、撤销功能

$$\operatorname{Dec}^{\{\operatorname{pk}_j\}_{j\in[N]},\operatorname{ct}}(N,i,\operatorname{sk}_i)\to\mu$$

每个用户生成 自己的公私钥对 Gen() → pk, sk

目标是 叛徒追踪

Enc($\{pk_j\}_{j\in[N]}, \mu\in\{0,1\}^{\lambda}$) \to ct

加密之前 收件人列表无限制 自然具有 广播、撤销功能

 $\mathrm{Dec}^{\{\mathrm{pk}_j\}_{j\in[N]},\mathrm{ct}}(N,i,\mathrm{sk}_i)\to\mu$

random-access 可随机访问的输入 Dec 不一定全读,刻画效率

每个用户生成 自己的公私钥对 Gen() → pk, sk

目标是 -叛徒追踪

加密之前 收件人列表无限制 自然具有 广播、撤销功能

$$\operatorname{Dec}^{\{\operatorname{pk}_j\}_{j\in[N]},\operatorname{ct}}(N,i,\operatorname{sk}_i)\to\mu$$

random-access 可随机访问的输入 Dec 不一定全读,刻画效率

$$\text{Trace}^{D}(\{\text{pk}_{j}^{*}\}_{j\in[N]}, 1^{1/\epsilon^{*}}) \to i^{*} \in [N] \cup \{\bot\}$$

每个用户生成 自己的公私钥对 Gen() → pk, sk

目标是 - 叛徒追踪

Enc($\{pk_j\}_{j\in[N]}, \mu\in\{0,1\}^{\lambda}$) \to ct

 自然具有 广播、撤销功能

 $\operatorname{Dec}^{\{\operatorname{pk}_j\}_{j\in[N]},\operatorname{ct}}(N,i,\operatorname{sk}_i)\to\mu$

· random-access 可随机访问的输入 Dec 不一定全读,刻画效率

 $\text{Trace}^{D}(\{\text{pk}_{j}^{*}\}_{j\in[N]}, 1^{1/\varepsilon^{*}}) \to i^{*} \in [N] \cup \{\bot\}$

D 让以 $\{pk_i^*\}_{i\in[N]}$ 为收件人列表的密文不安全 → 能追踪到叛徒

ad hoc broadcast, trace, and revoke 自组型广播、追踪、撤销 (AH-BTR)

每个用户生成 自己的公私钥对 Gen() → pk, sk

目标是 - 叛徒追踪

Enc(
$$\{pk_j\}_{j\in[N]}, \mu\in\{0,1\}^{\lambda}$$
) \to ct

加密之前 收件人列表无限制 自然具有 广播、撤销功能

$$\operatorname{Dec}^{\{\operatorname{pk}_j\}_{j\in[N]},\operatorname{ct}}(N,i,\operatorname{sk}_i)\to\mu$$

random-access 可随机访问的输入 Dec 不一定全读,刻画效率

$$\text{Trace}^{D}(\{\text{pk}_{j}^{*}\}_{j\in[N]}, 1^{1/\varepsilon^{*}}) \to i^{*} \in [N] \cup \{\bot\}$$

D 让以 $\{pk_i^*\}_{i\in[N]}$ 为收件人列表的密文不安全 → 能追踪到叛徒

通常定义. $\forall N, \mu, i,$ $\Pr \begin{bmatrix} (\mathsf{pk}_j, \mathsf{sk}_j) \overset{\$}{\leftarrow} \mathsf{Gen}() \ \forall j \\ \mathsf{ct} \overset{\$}{\leftarrow} \mathsf{Enc}(\{\mathsf{pk}_j\}_{j \in [N]}, \mu) \\ : \ \mathsf{Dec}^{\{\mathsf{pk}_j\}_{j \in [N]}, \mathsf{ct}}(N, i, \mathsf{sk}_i) = \mu \end{bmatrix} = 1.$

通常定义. $\forall N, \mu, i,$ $(pk_j, sk_j) \stackrel{\$}{\leftarrow} Gen() \ \forall j \ \text{所有密钥都$ **正常** $}$ $\text{Pr} \quad \text{ct} \stackrel{\$}{\leftarrow} Enc(\{pk_j\}_{j \in [N]}, \mu) \\ : \text{Dec}^{\{pk_j\}_{j \in [N]}, ct}(N, i, sk_i) = \mu]} = 1.$

通常定义. $\forall N, \mu, i,$ $(pk_j, sk_j) \stackrel{\$}{\leftarrow} Gen() \ \forall j \ \text{所有密钥都} \mathbf{E常}$ $\text{Pr} \quad \text{ct} \stackrel{\$}{\leftarrow} Enc(\{pk_j\}_{j \in [N]}, \mu) \\ : \text{Dec}^{\{pk_j\}_{j \in [N]}, ct}(N, i, sk_i) = \mu] = 1.$

adversarial malformed denial-of-service **担忧.** 收件人列表有**别有用心**的**异常**公钥,导致**拒绝服务**攻击,即正常公钥对应的也无法解密

通常定义. ∀*N*, *µ*, *i*,

adversarial malformed denial-of-service **担忧.** 收件人列表有**别有用心**的**异常**公钥,导致**拒绝服务**攻击,即正常公钥对应的也无法解密

robust correctness 定义**牢靠正确性**排除这种攻击

推演定义: 牢靠正确性 robust

设正常公钥的长度是 ℓ_{pk} ,即 $Pr\left[(pk, sk) \stackrel{\$}{\leftarrow} Gen(): |pk| = \ell_{pk}\right] = 1$.

设正常公钥的长度是 ℓ_{pk} ,即 $Pr\left[(pk, sk) \stackrel{\$}{\leftarrow} Gen(): |pk| = \ell_{pk}\right] = 1$.

$$\forall N \quad \forall i \quad \forall \{pk_i\}_{i \in [N] \setminus \{i\}} \text{ s.t. } \forall j : |pk_i| = \ell_{pk} \quad \forall \mu$$

设正常公钥的长度是 ℓ_{pk} ,即 $Pr\left[(pk, sk) \stackrel{\$}{\leftarrow} Gen(): |pk| = \ell_{pk}\right] = 1$.

$$\forall N \quad \forall i \quad \forall \{pk_j\}_{j \in [N] \setminus \{i\}} \text{ s.t. } \forall j : |pk_j| = \ell_{pk} \quad \forall \mu$$

$$\Pr\begin{bmatrix} (\mathbf{pk}_i, \mathbf{sk}_i) \stackrel{\$}{\leftarrow} \mathbf{Gen}() \\ \mathbf{ct} \stackrel{\$}{\leftarrow} \mathbf{Enc}(\{\mathbf{pk}_j\}_{j \in [N]}, \mu) \\ : \mathbf{Dec}^{\{\mathbf{pk}_j\}_{j \in [N]}, \mathsf{ct}}(N, i, \mathbf{sk}_i) = \mu \end{bmatrix} = 1.$$

设正常公钥的长度是 ℓ_{pk} ,即 $\Pr\left[(pk, sk) \stackrel{\$}{\leftarrow} Gen(): |pk| = \ell_{pk}\right] = 1$.

$$\forall N \quad \forall i \quad \forall \{\operatorname{pk}_j\}_{j \in [N] \setminus \{i\}} \text{ s.t. } \forall j : |\operatorname{pk}_j| = \ell_{\operatorname{pk}} \quad \forall \mu$$

$$\Pr\begin{bmatrix} (p\mathbf{k}_{i}, s\mathbf{k}_{i}) \stackrel{\$}{\leftarrow} Gen() \\ ct \stackrel{\$}{\leftarrow} Enc(\{p\mathbf{k}_{j}\}_{j \in [N]}, \mu) \\ : Dec^{\{p\mathbf{k}_{j}\}_{j \in [N]}, ct}(N, i, s\mathbf{k}_{i}) = \mu \end{bmatrix} = 1.$$

异常 pk 不影响正常 sk 解密

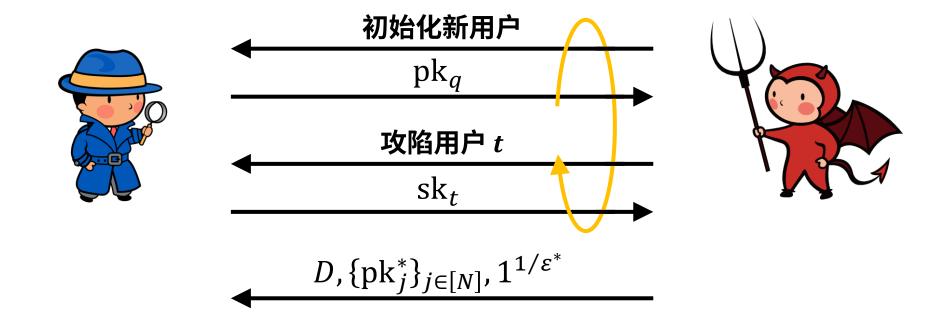
设正常公钥的长度是 ℓ_{pk} ,即 $Pr\left[(pk, sk) \stackrel{\$}{\leftarrow} Gen(): |pk| = \ell_{pk}\right] = 1$.

$$\forall N \quad \forall i \quad \forall \{pk_j\}_{j \in [N] \setminus \{i\}} \text{ s.t. } \forall j : |pk_j| = \ell_{pk} \quad \forall \mu$$

$$\Pr\begin{bmatrix} (\mathbf{pk}_i, \mathbf{sk}_i) \stackrel{\$}{\leftarrow} \mathbf{Gen}() \\ \mathbf{ct} \stackrel{\$}{\leftarrow} \mathbf{Enc}(\{\mathbf{pk}_j\}_{j \in [N]}, \mu) \\ \vdots \quad \mathbf{Dec}^{\{\mathbf{pk}_j\}_{j \in [N]}, \mathsf{ct}}(N, i, \mathbf{sk}_i) = \mu \end{bmatrix} = 1.$$

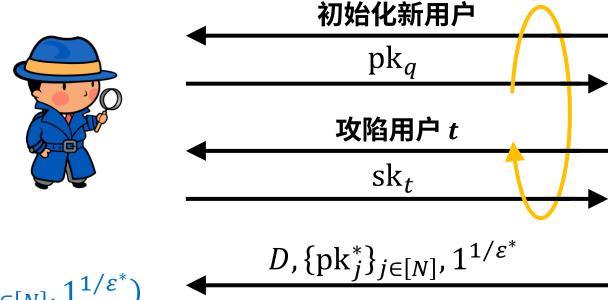
异常 pk 不影响正常 sk 解密

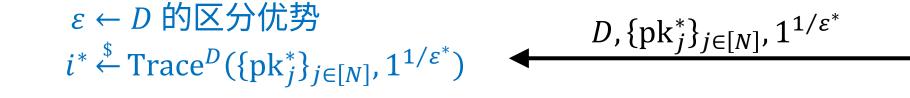
blatantly
不考虑明目张胆异常(长度错误)的 pk
——效率考量



 $\varepsilon \leftarrow D$ 的区分优势 $i^* \stackrel{\$}{\leftarrow} \operatorname{Trace}^D(\{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

D, $\{\operatorname{pk}_{j}^{*}\}_{j\in[N]}$, $1^{1/\varepsilon^{*}}$





胜利条件.

 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个未被攻陷用户的公钥

或

$$|\varepsilon| \ge \varepsilon^*$$
且 $i^* = \bot$

$$\varepsilon \leftarrow D$$
 的区分优势 $i^* \leftarrow \text{Trace}^D(\{\text{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

$$D$$
, $\{\operatorname{pk}_j^*\}_{j\in[N]}$, $1^{1/\varepsilon^*}$

胜利条件.

 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个**未被攻陷用户**的公钥 或 指控了无辜用户

 $|\varepsilon| \ge \varepsilon^* \coprod i^* = \bot$

 $\varepsilon \leftarrow D$ 的区分优势 $i^* \leftarrow \text{Trace}^D(\{\text{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

$$D, \{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*}$$

胜利条件.

 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个**未被攻陷用户**的公钥 或 指控了无辜用户

 $|\varepsilon| \ge \varepsilon^* \coprod i^* = \bot$

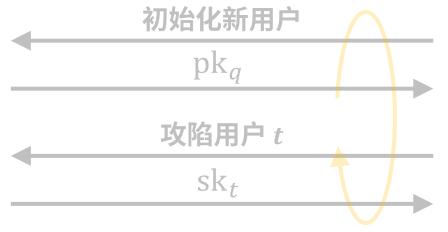
 $\varepsilon \leftarrow D$ 的区分优势 $i^* \stackrel{\$}{\leftarrow} \operatorname{Trace}^D(\{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

 $D, \{\operatorname{pk}_{j}^{*}\}_{j \in [N]}, 1^{1/\varepsilon^{*}}$

胜利条件.

 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个**未被攻陷用户**的公钥或 指控了无辜用户

 $|\varepsilon| \ge \varepsilon^* \coprod i^* = \bot$



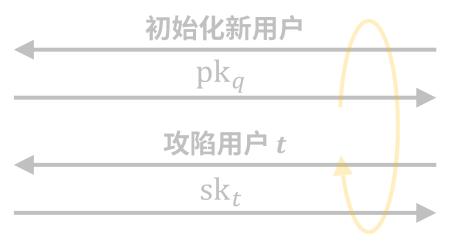
 $\varepsilon \leftarrow D$ 的区分优势 $i^* \stackrel{\$}{\leftarrow} \operatorname{Trace}^D(\{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

(Trace 可以指控使坏者自己生成的 pk)

胜利条件.

 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个**未被攻陷用户**的公钥或 指控了无辜用户

 $|\varepsilon| \geq \varepsilon^* \coprod i^* = \bot$



 $\varepsilon \leftarrow D$ 的区分优势 $i^* \stackrel{\$}{\leftarrow} \operatorname{Trace}^D(\{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

 $D_{j}^{\{pk_{j}^{*}\}_{j\in[N]}}$ $1^{1/\varepsilon^{*}}$ pk_{j}^{*} 不需要来自挑战者

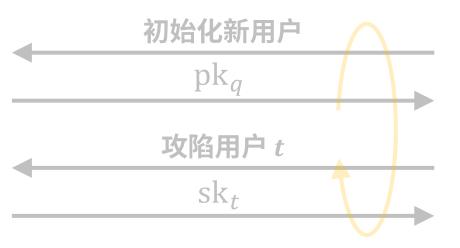
(Trace 可以指控使坏者自己生成的 pk)

胜利条件.

 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个未被攻陷用户的公钥或 指控了无辜用户

 $|\varepsilon| \ge \varepsilon^* \coprod i^* = \bot$

安全定义:可追踪性



 $\varepsilon \leftarrow D$ 的区分优势 $i^* \stackrel{\$}{\leftarrow} \operatorname{Trace}^D(\{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

 $D_{j} \{ pk_{j}^{*} \}_{j \in [N]}, 1^{1/\varepsilon^{*}}$ pk_{j}^{*} 不需要来自挑战者

(Trace 可以指控使坏者自己生成的 pk)

胜利条件.

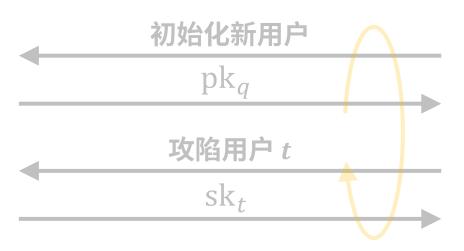
 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个**未被攻陷用户**的公钥或 指控了无辜用户

 $|\varepsilon| \ge \varepsilon^*$ 且 $i^* = \bot$

解码器让加密不安全, 但没识别出叛徒

必须是挑战者初始化的

安全定义:可追踪性



 $\varepsilon \leftarrow D$ 的区分优势 $i^* \stackrel{\$}{\leftarrow} \operatorname{Trace}^D(\{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

D $\{pk_j^*\}_{j\in[N]}$ $1^{1/\varepsilon^*}$ pk_i^* 不需要来自挑战者

(Trace 可以指控使坏者自己生成的 pk)

胜利条件.

 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个未被攻陷用户的公钥或 指控了无辜用户

 $|\varepsilon| \ge \varepsilon^* \coprod i^* = \bot$

解码器让加密不安全, 但没识别出叛徒

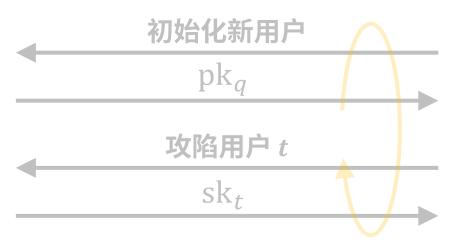
必须是挑战者初始化的

若 $pk_1 = pk_2$ 且查询了 sk_2 ,则 pk_1 , pk_2 都未被攻陷

排除公钥碰撞

安全定义: 可追踪性

[Z] 可追踪 → 语义安全



 $\varepsilon \leftarrow D$ 的区分优势 $i^* \stackrel{\$}{\leftarrow} \operatorname{Trace}^D(\{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

 $D, \{\operatorname{pk}_{j}^{*}\}_{j \in [N]}, 1^{1/\varepsilon^{*}}$

 pk_i^* 不需要来自挑战者

(Trace 可以指控使坏者自己生成的 pk)

胜利条件.

 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个未被攻陷用户的公钥或

 $|\varepsilon| \ge \varepsilon^* \coprod i^* = \bot$

解码器让加密不安全, 但没识别出叛徒

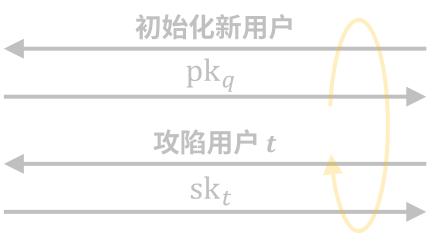
必须是挑战者初始化的

若 $pk_1 = pk_2$ 且查询了 sk_2 ,则 pk_1 , pk_2 都未被攻陷

排除公钥碰撞

安全定义: 可追踪性

[Z] 可追踪 → 语义安全



 $\varepsilon \leftarrow D$ 的区分优势 $i^* \stackrel{\$}{\leftarrow} \operatorname{Trace}^D(\{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

 $D, \{\operatorname{pk}_{j}^{*}\}_{j \in [N]}, 1^{1/\varepsilon^{*}}$

 pk_j^* 不需要来自挑战者

(Trace 可以指控使坏者自己生成的 pk)

胜利条件.

 $i^* \in [N]$ 且 $pk_{i^*}^*$ 是某个未被攻陷用户的公钥或

 $|\varepsilon| \ge \varepsilon^* \coprod i^* = \bot$

解码器让加密不安全, 但没识别出叛徒

必须是挑战者初始化的

若 $pk_1 = pk_2$ 且查询了 sk_2 ,则 pk_1 , pk_2 都未被攻陷

排除公钥碰撞

简化安全定义:完备性与可靠性 completeness soundness

完备性

D, $\{\operatorname{pk}_j^*\}_{j\in[N]}$, $1^{1/\varepsilon^*}$

$$\varepsilon \leftarrow D$$
 的区分化劣 $i^* \leftarrow \text{Trace}^D(\{\text{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

胜利条件. $|\varepsilon| \geq \varepsilon^* \perp i^* = \perp$

简化安全定义:完备性与可靠性 completeness soundness

完备性

 $D, \{\operatorname{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*}$

 $\varepsilon \leftarrow D$ 的区分优势 $i^* \leftarrow \text{Trace}^D(\{\text{pk}_j^*\}_{j \in [N]}, 1^{1/\varepsilon^*})$

胜利条件。 $|\varepsilon| \geq \varepsilon^* \perp i^* = \perp$

可靠性

 $D, N, i_{\perp}^*, \{\operatorname{pk}_j^*\}_{j \in [N] \setminus \{i_{\perp}^*\}}, 1^{1/\varepsilon^*}$

pk

 $pk_{i_{\perp}^{*}}^{*} \leftarrow pk$ $i^{*} \leftarrow Trace^{D}(\{pk_{j}^{*}\}_{j \in [N]}, 1^{1/\varepsilon^{*}})$

胜利条件. $i^* = i_{\perp}^*$

简化安全定义:完备性与可靠性 completeness soundness

完备性

 $D, \{\operatorname{pk}_{j}^{*}\}_{j \in [N]}, 1^{1/\varepsilon^{*}}$

 $\varepsilon \leftarrow D$ 的区分优势 $i^* \leftarrow \text{Trace}^D(\{\text{pk}_i^*\}_{i \in [N]}, 1^{1/\varepsilon^*})$

胜利条件。 $|\varepsilon| \geq \varepsilon^* \perp i^* = \perp$

定理. AH-BTR 可追踪 ⇔ 完备且可靠

可靠性

pk

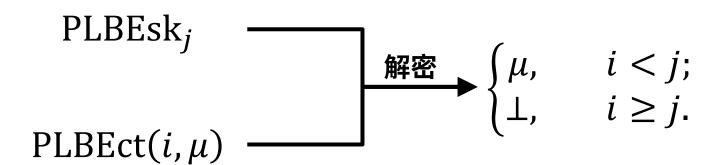
 $[D, N, i^*_{\perp}, \{\operatorname{pk}_j^*\}_{j \in [N] \setminus \{i^*_{\perp}\}}, 1^{1/\varepsilon^*}]$

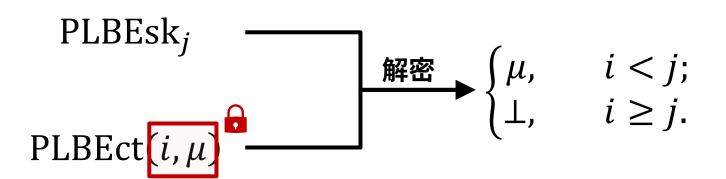
 $pk_{i_{\perp}^{*}}^{*} \leftarrow pk$ $i^{*} \leftarrow Trace^{D}(\{pk_{j}^{*}\}_{j \in [N]}, 1^{1/\varepsilon^{*}})$

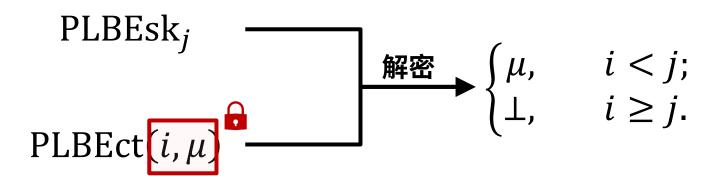
胜利条件. $i^* = i_{\perp}^*$

PLBEsk_j

PLBEct(i, μ)

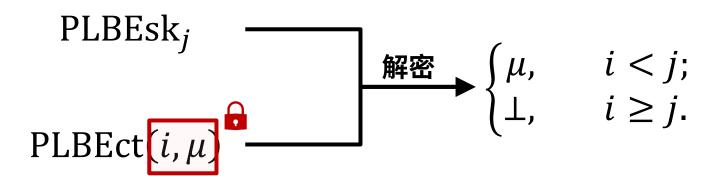






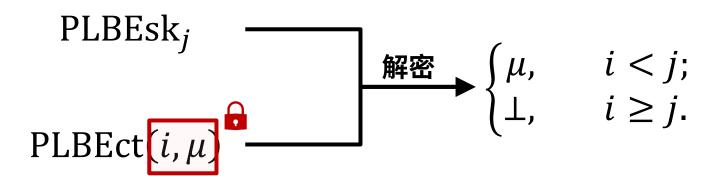
从 PLBE 到 TT

 $TTsk_j = PLBEsk_j$



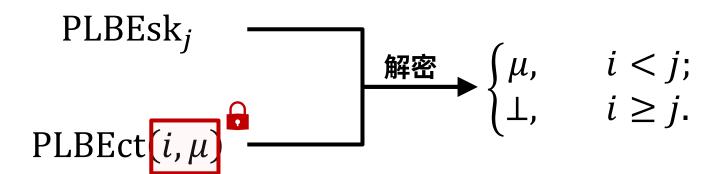
```
从 PLBE 到 TT

TTsk_j = PLBEsk_j
TTct(\mu) = 
PLBEct(0, \mu)
```

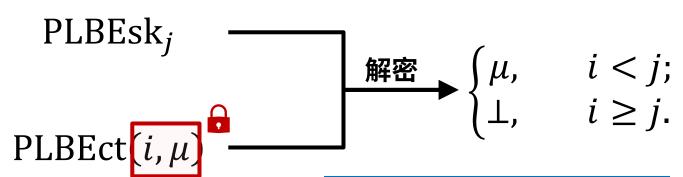


```
从 PLBE 到 TT
```

```
\begin{aligned} \text{TTsk}_j &= \text{PLBEsk}_j \\ \text{TTct}(\mu) &= \\ \text{PLBEct}(\textcolor{red}{\mathbf{0}}, \mu) & \cdots & \text{PLBEct}(\textcolor{red}{\boldsymbol{i}} - \textcolor{red}{\mathbf{1}}, \mu) & \text{PLBEct}(\textcolor{red}{\boldsymbol{i}}, \mu) & \cdots & \text{PLBEct}(\textcolor{red}{\boldsymbol{N}}, \mu) \end{aligned}
```



```
从 PLBE 到 TT  TTsk_j = PLBEsk_j   TTct(\mu) =   PLBEct(0,\mu) \quad \cdots \quad PLBEct(i-1,\mu) \quad PLBEct(i,\mu) \quad \cdots \quad PLBEct(N,\mu)   \geq \varepsilon^*
```



消息隐藏 (message-hiding)

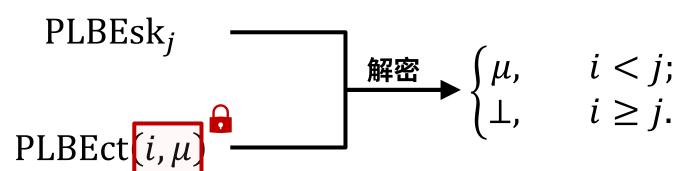
从 PLBE 到 TT

即使掌握 $PLBEsk_*$,也有 $PLBEct(N, \mu) \approx PLBEct(N, 0)$

```
TTsk_j = PLBEsk_j
TTct(\mu) = PLBEct(0, \mu) \cdots PLBEct(i-1, \mu) PLBEct(i, \mu) \cdots PLBEct(N, \mu)
\geq \varepsilon^* 消息隐藏:\approx 0
```

13 / 32

总共下降 $\Omega(\varepsilon^*)$



从 PLBE 到 TT

 $TTsk_j = PLBEsk_j$ $TTct(\mu) =$ $PLBEct(0, \mu) \cdots$

 $\geq \varepsilon^*$

消息隐藏 (message-hiding)

即使掌握 PLBEsk_{*},也有 PLBEct(N, μ) \approx PLBEct(N, 0)

下标隐藏 (index-hiding)

即使掌握 PLBEsk_{$\neq i$},也有 PLBEct($i - 1, \mu$) \approx PLBEct(i, μ)

PLBEct $(0, \mu)$ ··· PLBEct $(i - 1, \mu)$ PLBEct (i, μ) ··· PLBEct (N, μ)

下标隐藏: 若用户 i 无辜,则下降 ≈ 0 若下降 $\Omega(\varepsilon^*/N)$ 则用户 i 是叛徒

消息隐藏:≈0

总共下降 $\Omega(\varepsilon^*)$

自组型隐私区间广播加密(AH-PLBE) ad hoc private linear broadcast encryption

$$\operatorname{Gen}() \to \operatorname{pk,sk}$$

$$\operatorname{Enc}(\{\operatorname{pk}_j\}_{j\in[N]}, i_{\perp}, \mu \in \{0,1\}^{\lambda}) \to \operatorname{ct}$$

$$\operatorname{Dec}^{\{\operatorname{pk}_j\}_{j\in[N]},\operatorname{ct}}(N,i,\operatorname{sk}_i) \to \mu \ (若 i > i_{\perp})$$

自组型隐私区间广播加密 (AH-PLBE) ad hoc private linear broadcast encryption

$$Gen() \rightarrow pk, sk$$

$$\operatorname{Enc}(\{\operatorname{pk}_j\}_{j\in[N]}, i_{\perp}, \mu \in \{0,1\}^{\lambda}) \to \operatorname{ct}$$

$$\operatorname{Dec}^{\{\operatorname{pk}_j\}_{j\in[N]},\operatorname{ct}}(N,i,\operatorname{sk}_i)\to\mu$$
 (若 $i>i_\perp$)

牢靠正确性

 $\forall N \ \forall i \ \forall \{pk_j\}_{j \in [N] \setminus \{i\}} \text{ s.t. } \forall j \colon |pk_j| = \ell_{pk} \ \forall \mu,$ $\text{Pr} \begin{bmatrix} (pk_i, sk_i) \stackrel{\$}{\leftarrow} \text{Gen}() \\ \text{ct} \stackrel{\$}{\leftarrow} \text{Enc}(\{pk_j\}_{j \in [N]}, 0, \mu) \\ \vdots \text{Dec}^{\{pk_j\}_{j \in [N]}, \text{ct}}(N, i, sk_i) = \mu \end{bmatrix} = 1$

消息隐藏

 $\text{Exp}_{\text{MH}}^{0} \approx \text{Exp}_{\text{MH}}^{1}$

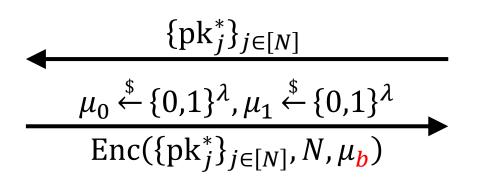
消息隐藏

 $\text{Exp}_{\text{MH}}^{0} \approx \text{Exp}_{\text{MH}}^{1}$

 $\{\operatorname{pk}_{j}^{*}\}_{j\in[N]}$

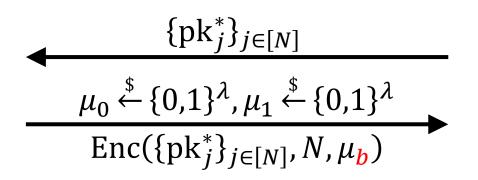
消息隐藏

 $\operatorname{Exp}_{\mathrm{MH}}^{\mathbf{0}} \approx \operatorname{Exp}_{\mathrm{MH}}^{\mathbf{1}}$



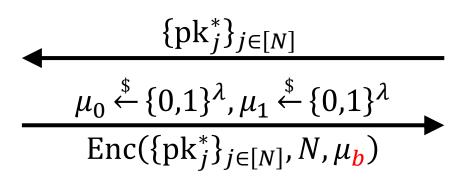
消息隐藏

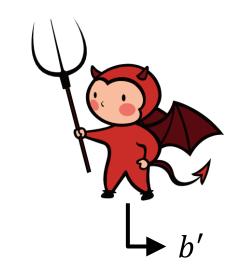
 $\operatorname{Exp}_{\mathrm{MH}}^{\mathbf{0}} \approx \operatorname{Exp}_{\mathrm{MH}}^{\mathbf{1}}$



消息隐藏

 $\operatorname{Exp}_{\mathrm{MH}}^{\mathbf{0}} \approx \operatorname{Exp}_{\mathrm{MH}}^{\mathbf{1}}$





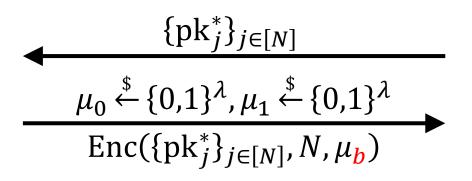
下标隐藏

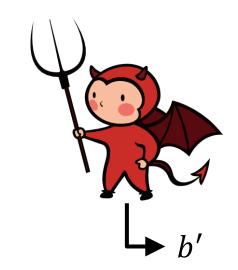
 $\text{Exp}_{\text{IH}}^{0} \approx \text{Exp}_{\text{IH}}^{1}$

pk

消息隐藏

 $\operatorname{Exp}_{\mathrm{MH}}^{\mathbf{0}} \approx \operatorname{Exp}_{\mathrm{MH}}^{\mathbf{1}}$





下标隐藏

 $\text{Exp}_{\text{IH}}^{0} \approx \text{Exp}_{\text{IH}}^{1}$

$$\begin{array}{c}
 & \text{pk} \\
 & N, i_{\perp}^*, \{\text{pk}_j^*\}_{j \in [N] \setminus \{i_{\perp}^*\}} \\
\end{array}$$

消息隐藏

 $\operatorname{Exp}_{\mathrm{MH}}^{\mathbf{0}} \approx \operatorname{Exp}_{\mathrm{MH}}^{\mathbf{1}}$

$$\{\operatorname{pk}_{j}^{*}\}_{j\in[N]}$$

$$\mu_{0} \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}, \mu_{1} \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$\operatorname{Enc}(\{\operatorname{pk}_{j}^{*}\}_{j\in[N]}, N, \mu_{b})$$

下标隐藏

 $\text{Exp}_{\text{IH}}^{0} \approx \text{Exp}_{\text{IH}}^{1}$

 $\mathsf{pk}^*_{i^*_{\perp}} \leftarrow \mathsf{pk}$

$$\begin{array}{c}
 & pk \\
 & N, i_{\perp}^*, \{pk_j^*\}_{j \in [N] \setminus \{i_{\perp}^*\}} \\
 & \mu \leftarrow \{0,1\}^{\lambda} \\
\hline
& Enc(\{pk_j^*\}_{j \in [N]}, i_{\perp}^* - 1 + b, \mu)
\end{array}$$

消息隐藏

 $\operatorname{Exp}_{\mathrm{MH}}^{\mathbf{0}} \approx \operatorname{Exp}_{\mathrm{MH}}^{\mathbf{1}}$

$$\frac{\{\operatorname{pk}_{j}^{*}\}_{j\in[N]}}{\mu_{0} \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}, \mu_{1} \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}} \\
= \operatorname{Enc}(\{\operatorname{pk}_{j}^{*}\}_{j\in[N]}, N, \mu_{b})$$



定理. AH-PLBE → AH-BTR; 消息隐藏 → 完备性; 下标隐藏 → 可靠性

下标隐藏

 $\text{Exp}_{\text{IH}}^{0} \approx \text{Exp}_{\text{IH}}^{1}$

 $\mathsf{pk}^*_{i^*_\perp} \leftarrow \mathsf{pk}$

$$\begin{array}{c}
 & \text{pk} \\
 & N, i_{\perp}^*, \{\text{pk}_j^*\}_{j \in [N] \setminus \{i_{\perp}^*\}} \\
 & \mu \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda} \\
 & \text{Enc}(\{\text{pk}_j^*\}_{j \in [N]}, i_{\perp}^* - 1 + b, \mu)
\end{array}$$


```
\begin{aligned} \mathbf{pk} &= \mathsf{PKEpk}, \quad \mathbf{sk} &= \mathsf{PKEsk}, \\ \mathbf{ct}(\{\mathbf{pk}_j\}_{j \in [N]}, \mathbf{i}_{\perp}, \mu) &= \{\mathsf{PKEct}_j(\mathbf{pk}_j, \perp)\}_{j \leq \mathbf{i}_{\perp}}, \{\mathsf{PKEct}_j(\mathbf{pk}_j, \mu)\}_{j > \mathbf{i}_{\perp}}. \end{aligned}
```

```
\begin{aligned} \text{pk} &= \text{PKEpk,} \quad \text{sk} &= \text{PKEsk,} \\ \text{ct}(\{\text{pk}_j\}_{j \in [N]}, \boldsymbol{i_\perp}, \boldsymbol{\mu}) &= \{\text{PKEct}_j(\text{pk}_j, \boldsymbol{\perp})\}_{j \leq \boldsymbol{i_\perp}}, \{\text{PKEct}_j(\text{pk}_j, \boldsymbol{\mu})\}_{j > \boldsymbol{i_\perp}}. \end{aligned}
```

```
pk = PKEpk, \quad sk = PKEsk, 
|ct| = \Omega(N)
ct(\{pk_j\}_{j \in [N]}, i_{\perp}, \mu) = \{PKEct_j(pk_j, \perp)\}_{j \leq i_{\perp}}, \{PKEct_j(pk_j, \mu)\}_{j > i_{\perp}}.
```

PKE 语义安全 → PLBE 消息隐藏、下标隐藏

```
pk = PKEpk, \quad sk = PKEsk, 
|ct| = \Omega(N)
ct(\{pk_j\}_{j \in [N]}, i_{\perp}, \mu) = \{PKEct_j(pk_j, \perp)\}_{j \leq i_{\perp}}, \{PKEct_j(pk_j, \mu)\}_{j > i_{\perp}}.
```

PKE 语义安全 ⇒ PLBE 消息隐藏、下标隐藏

令 ct 为程序 GetCT($i \in [N]$) → PKEct_i 的短代码?(用程序混淆保证安全)

```
\begin{aligned} \text{pk} &= \text{PKEpk,} \quad \text{sk} &= \text{PKEsk,} \\ \text{ct}(\{\text{pk}_j\}_{j \in [N]}, i_{\perp}, \mu) &= \{\text{PKEct}_j(\text{pk}_j, \perp)\}_{j \leq i_{\perp}}, \{\text{PKEct}_j(\text{pk}_j, \mu)\}_{j > i_{\perp}}. \end{aligned}
```

PKE 语义安全 → PLBE 消息隐藏、下标隐藏

令 ct 为程序 GetCT($i \in [N]$) → PKEct_i 的短代码?(用程序混淆保证安全) GetCT 必须**知道**所有 pk(列表的熵可达 $\Omega(N)$),代码长度是 $\Omega(N)$

```
\begin{aligned} \text{pk} &= \text{PKEpk,} \quad \text{sk} &= \text{PKEsk,} \\ \text{ct}(\{\text{pk}_j\}_{j \in [N]}, \boldsymbol{i_\perp}, \boldsymbol{\mu}) &= \{\text{PKEct}_j(\text{pk}_j, \boldsymbol{\perp})\}_{j \leq \boldsymbol{i_\perp}}, \{\text{PKEct}_j(\text{pk}_j, \boldsymbol{\mu})\}_{j > \boldsymbol{i_\perp}}. \end{aligned}
```

PKE 语义安全 ⇒ PLBE 消息隐藏、下标隐藏

令 ct 为程序 GetCT($i \in [N]$) → PKEct_i 的短代码?(用程序混淆保证安全) GetCT 必须知道所有 pk(列表的熵可达 $\Omega(N)$),代码长度是 $\Omega(N)$

garbled circuits

garbling

用乱码电路: $GetCT(i \in [N]) \rightarrow \hat{C}_i \neq C_i(pk_i) \rightarrow PKEct_i$ 的乱码化

```
\begin{aligned} \text{pk} &= \text{PKEpk,} & \text{sk} &= \text{PKEsk,} \\ \text{ct}(\{\text{pk}_j\}_{j \in [N]}, \boldsymbol{i_\perp}, \boldsymbol{\mu}) &= \{\text{PKEct}_j(\text{pk}_j, \boldsymbol{\perp})\}_{j \leq \boldsymbol{i_\perp}}, \{\text{PKEct}_j(\text{pk}_j, \boldsymbol{\mu})\}_{j > \boldsymbol{i_\perp}}. \end{aligned}
```

PKE 语义安全 ⇒ PLBE 消息隐藏、下标隐藏

令 ct 为程序 GetCT($i \in [N]$) → PKEct_i 的短代码?(用程序混淆保证安全) GetCT 必须**知道**所有 pk(列表的熵可达 $\Omega(N)$),代码长度是 $\Omega(N)$

garbled circuits

garbling

用乱码电路: GetCT $(i \in [N]) \rightarrow \hat{C}_i \neq C_i(pk_i) \rightarrow PKEct_i$ 的乱码化

✓ GetCT 不用知道 pk,代码长度是 O(1)

```
\begin{aligned} \text{pk} &= \text{PKEpk,} & \text{sk} &= \text{PKEsk,} \\ \text{ct}(\{\text{pk}_j\}_{j \in [N]}, \boldsymbol{i_\perp}, \boldsymbol{\mu}) &= \{\text{PKEct}_j(\text{pk}_j, \boldsymbol{\perp})\}_{j \leq \boldsymbol{i_\perp}}, \{\text{PKEct}_j(\text{pk}_j, \boldsymbol{\mu})\}_{j > \boldsymbol{i_\perp}}. \end{aligned}
```

PKE 语义安全 ⇒ PLBE 消息隐藏、下标隐藏

令 ct 为程序 GetCT($i \in [N]$) → PKEct_i 的短代码?(用程序混淆保证安全) GetCT 必须知道所有 pk(列表的熵可达 $\Omega(N)$),代码长度是 $\Omega(N)$

garbled circuits

garbling

用乱码电路: GetCT $(i \in [N]) \rightarrow \hat{C}_i \neq C_i(pk_i) \rightarrow PKEct_i$ 的乱码化

- ✓ GetCT 不用知道 pk,代码长度是 O(1)
- ? 如何选择 $\hat{C_i}$ 的标签?(对应 pk_i) labels

```
pk = PKEpk, \quad sk = PKEsk, 
|ct| = \Omega(N)
ct(\{pk_j\}_{j \in [N]}, i_{\perp}, \mu) = \{PKEct_j(pk_j, \perp)\}_{j \leq i_{\perp}}, \{PKEct_j(pk_j, \mu)\}_{j > i_{\perp}}.
```

PKE 语义安全 ⇒ PLBE 消息隐藏、下标隐藏

令 ct 为程序 GetCT($i \in [N]$) → PKEct_i 的短代码?(用程序混淆保证安全) GetCT 必须知道所有 pk(列表的熵可达 $\Omega(N)$),代码长度是 $\Omega(N)$

garbled circuits

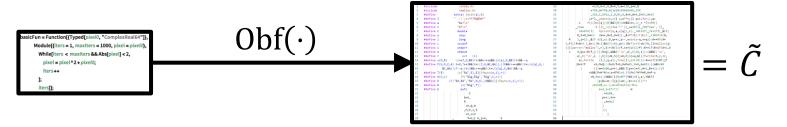
garbling

用乱码电路: GetCT $(i \in [N]) \rightarrow \hat{C}_i \neq C_i(pk_i) \rightarrow PKEct_i$ 的乱码化

- ✓ GetCT 不用知道 pk,代码长度是 O(1)
- ② 如何选择 \hat{C}_i 的标签?(对应 pk_i)

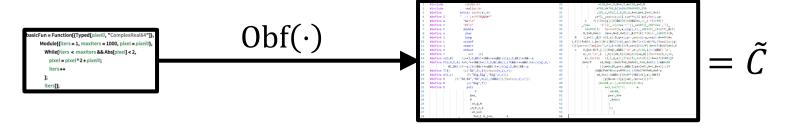
工具:不可区分安全的混淆、乱码电路 indistinguishability obfuscation garbled circuits





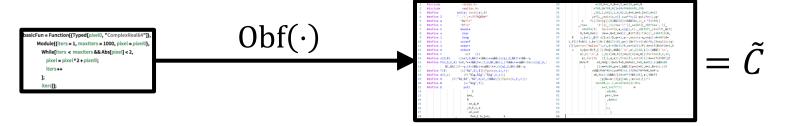
正确。
$$\forall C, x : \tilde{C}(x) = C(x)$$

安全
$$|C_0| = |C_1|$$
 且 $\forall x$: $C_0(x) = C_1(x)$,则 $Obf(C_0) \approx Obf(C_1)$



正确。
$$\forall C, x : \tilde{C}(x) = C(x)$$

安全.
$$|C_0| = |C_1|$$
 且 $\forall x$: $C_0(x) = C_1(x)$,则 $Obf(C_0) \approx Obf(C_1)$



正确。
$$\forall C, x : \tilde{C}(x) = C(x)$$

安全.
$$|C_0| = |C_1|$$
 且 $\forall x$: $C_0(x) = C_1(x)$,则 $Obf(C_0) \approx Obf(C_1)$

正确。
$$\forall C, x: \hat{C}(\{L_i^{x_i}\}_{i\in[|x|]}) = C(x)$$

安全
$$(\hat{C}, \{L_i^{x_i}\}_{i \in [|x|]}) \approx \text{Sim}(1^{|C|}, 1^{|x|}, C(x))$$

D

$$D \xrightarrow{\text{Hash(hk, \cdot)}} h, \widehat{D} \qquad |h| = O(1)$$

$$D \xrightarrow{\text{Hash(hk, \cdot)}} h, \widehat{D} \qquad |h| = O(1)$$

$$\operatorname{Send}(h, i, L_0, L_1) \to \operatorname{ct}$$

依 D[i] 选择 L_0, L_1 之一

$$D \xrightarrow{\text{Hash(hk, \cdot)}} h, \widehat{D}$$

$$\operatorname{Send}(h, i, L_0, L_1) \to \operatorname{ct}$$

$$|h| = 0(1)$$

依 D[i] 选择 L_0, L_1 之一

凝练. Send 只需要 h (不需要 D)

$$D \xrightarrow{\text{Hash(hk, \cdot)}} h, \widehat{D}$$

$$\operatorname{Send}(h, i, L_0, L_1) \to \operatorname{ct}$$

$$\operatorname{Recv}^{\widehat{D}}(h, i, \operatorname{ct}) \to L_{D[i]}$$

$$|h| = 0(1)$$

依 D[i] 选择 L_0, L_1 之一

凝练. Send 只需要 h (不需要 D)

$$D \xrightarrow{\text{Hash(hk,\cdot)}} h, \widehat{D}$$
 $|h| = O(1)$ Send $(h, i, L_0, L_1) \to \text{ct}$ 依 $D[i]$ 选择 L_0, L_1 之一 凝练. Send 只需要 h (不需要 D) Recv $\widehat{D}(h, i, \text{ct}) \to L_{D[i]}$

安全性. 不能获取没有被选择的消息:

(hk, D, i, L_0 , L_1 , Send (h, i, L_0, L_1)) $\approx (\dots, SimSend(hk, D, i, L_{D[i]}))$

```
pk = PKEpk, sk = PKEsk,  \operatorname{ct}(\{\operatorname{pk}_j\}_{j\in[N]}, i_{\perp}, \mu) = \operatorname{hk}, h, \widetilde{\operatorname{GenCT}} = \operatorname{Obf}(\operatorname{GenCT}[\operatorname{hk}, h, i_{\perp}, \mu, k])   (h, \widetilde{D}) = \operatorname{Hash}(\operatorname{hk}, \operatorname{pk}_1 \parallel \cdots \parallel \operatorname{pk}_N)
```

```
pk = PKEpk, sk = PKEsk,  \operatorname{ct}(\{\operatorname{pk}_j\}_{j\in[N]}, i_{\perp}, \mu) = \operatorname{hk}, h, \widetilde{\operatorname{GenCT}} = \operatorname{Obf}(\operatorname{GenCT}[\operatorname{hk}, h, i_{\perp}, \mu, k])   (h, \widetilde{D}) = \operatorname{Hash}(\operatorname{hk}, \operatorname{pk}_1 \parallel \cdots \parallel \operatorname{pk}_N)
```

电路 GenCT[hk, h, i_{\perp}, μ, k] $(i \in [N])$

• 用 PRF(k,i) 产生各种所需的随机数

pk = PKEpk, sk = PKEsk,
$$\operatorname{ct}(\{\operatorname{pk}_j\}_{j\in[N]}, i_{\perp}, \mu) = \operatorname{hk}, h, \widetilde{\operatorname{GenCT}} = \operatorname{Obf}(\operatorname{GenCT}[\operatorname{hk}, h, i_{\perp}, \mu, k])$$
$$(h, \widetilde{D}) = \operatorname{Hash}(\operatorname{hk}, \operatorname{pk}_1 \parallel \cdots \parallel \operatorname{pk}_N)$$

电路 GenCT[hk, h, i_{\perp}, μ, k] $(i \in [N])$

- 用 PRF(k,i) 产生各种所需的随机数
- 输出 Garble $\left(C\left[\begin{cases} \bot, & i \leq i_{\bot}; \\ \mu, & i > i_{\bot}; \end{cases}\right]\right)$ 的 \hat{C}

电路 *C*[μ'](pk)

输出 PKEEnc(pk, μ')

pk = PKEpk, sk = PKEsk,
$$\operatorname{ct}(\{\operatorname{pk}_j\}_{j\in[N]}, i_{\perp}, \mu) = \operatorname{hk}, h, \widetilde{\operatorname{GenCT}} = \operatorname{Obf}(\operatorname{GenCT}[\operatorname{hk}, h, i_{\perp}, \mu, k])$$
$$(h, \widetilde{D}) = \operatorname{Hash}(\operatorname{hk}, \operatorname{pk}_1 \parallel \cdots \parallel \operatorname{pk}_N)$$

电路 GenCT[hk, h, i_{\perp}, μ, k] $(i \in [N])$

- 用 PRF(k,i) 产生各种所需的随机数
- 输出 Garble $\left(C\left[\begin{cases} \bot, & i \leq i_{\bot}; \\ \mu, & i > i_{\bot}; \end{cases}\right]\right)$ 的 \hat{C}
- $\mathfrak{A} \coprod \operatorname{rct}_{i,z} \stackrel{\$}{\leftarrow} \operatorname{Send}(\operatorname{hk}, h, (i-1)\ell_{\operatorname{pk}} + z, L_z^0, L_z^1)$

依 pk_i 的每一位选择 \widehat{c} 的标签

电路 C[μ'](**pk**) 输出 PKEEnc(pk, μ')

```
pk = PKEpk, sk = PKEsk,  ct(\{pk_j\}_{j\in[N]}, i_{\perp}, \mu) = hk, h, \widetilde{GenCT} = Obf(GenCT[hk, h, i_{\perp}, \mu, k])
```

pk = PKEpk, sk = PKEsk,
ct({pk_j}_{j∈[N]},
$$i_{\perp}$$
, μ) = hk, h , GenCT = Obf(GenCT[hk, h , i_{\perp} , μ , k])

用 sk_i 解密

1. $\widetilde{\text{GenCT}}(i) \rightarrow (\hat{C}, \{\text{rct}_{i,z}\})$ 获得乱码电路

pk = PKEpk, sk = PKEsk,
ct(
$$\{pk_i\}_{i \in [N]}, i_{\perp}, \mu$$
) = hk, h, \widetilde{GenCT} = Obf($GenCT[hk, h, i_{\perp}, \mu, k]$)

用 sk_i 解密

- 1. $\widetilde{\text{GenCT}}(i) \rightarrow (\widehat{C}, \{\text{rct}_{i,z}\})$
- 2. Hash(hk, D) \rightarrow (···, \widetilde{D})
- 3. $\operatorname{Recv}^{\widetilde{D}}(\cdots,\operatorname{rct}_{i,z}) \to L_z$

获得乱码电路

重新处理公钥列表

选出标签

pk = PKEpk, sk = PKEsk,
ct(
$$\{pk_j\}_{j\in[N]}$$
, i_{\perp} , μ) = hk, h , \widetilde{GenCT} = Obf($GenCT[hk, h, i_{\perp}, \mu, k]$)

用 sk_i 解密

1. $\widetilde{\text{GenCT}}(i) \rightarrow (\hat{C}, \{\text{rct}_{i,z}\})$ 获得乱码电路

2. Hash(hk, D) \rightarrow (…, \widetilde{D}) 重新处理公钥列表

3. $\operatorname{Recv}^{\widetilde{D}}(\cdots,\operatorname{rct}_{i,z}) \to L_z$ 选出标签

5. $PKEDec(sk_i, PKEct_i) \rightarrow \mu'$ 还原消息

pk = PKEpk, sk = PKEsk, $\cot(\{pk_j\}_{j\in[N]}, i_{\perp}, \mu) = hk, h, \widetilde{GenCT} = Obf(GenCT[hk, h, i_{\perp}, \mu, k])$

定理. 若工具分别有合适的安全性,则该 AH-PLBE 满足消息隐藏、下标隐藏

用 sk_i 解密

1. $\widetilde{\text{GenCT}}(i) \rightarrow (\hat{C}, \{\text{rct}_{i,z}\})$ 获得乱码电路

2. $\operatorname{Hash}(\operatorname{hk}, D) \to (\cdots, \widetilde{D})$ 重新处理公钥列表

3. $\operatorname{Recv}^{\widetilde{D}}(\cdots,\operatorname{rct}_{i,z}) \to L_z$ 选出标签

5. $PKEDec(sk_i, PKEct_i) \rightarrow \mu'$ 还原消息

定理。若工具分别有合适的安全性,则该 AH-PLBE 满足消息隐藏、下标隐藏

用 sk_i 解密

1. $\widetilde{\text{GenCT}}(i) \rightarrow (\hat{C}, \{\text{rct}_{i,z}\})$ 获得乱码电路

2. $\operatorname{Hash}(\operatorname{hk}, D) \to (\cdots, \widetilde{D})$ 重新处理公钥列表

3. $\operatorname{Recv}^{\widetilde{D}}(\dots,\operatorname{rct}_{i,z}) \to L_z$ 选出标签

5. $PKEDec(sk_i, PKEct_i) \rightarrow \mu'$ 还原消息

pk = PKEpk, sk = PKEsk, ② 密文长度 o(1) ct($\{pk_j\}_{j\in[N]}$, i_{\perp} , μ) = hk, h, GenCT = Obf($GenCT[hk, h, i_{\perp}, \mu, k]$)

定理. 若工具分别有合适的安全性,则该 AH-PLBE 满足消息隐藏、下标隐藏

用 sk_i 解密

- 1. $\widetilde{\text{GenCT}}(i) \rightarrow (\hat{C}, \{\text{rct}_{i,z}\})$
- 2. Hash(hk, D) \rightarrow (···, \widetilde{D})
- 3. $\operatorname{Recv}^{\overline{D}}(\cdots,\operatorname{rct}_{i,z}) \to L_z$
- 4. $\hat{C}(\{L_z\}) \to PKEct_i$
- 5. PKEDec(sk_i, PKEct_i) $\rightarrow \mu'$

获得乱码电路

重新处理公钥列表

选出标签

乱码电路求值

还原消息

AD HOC BROADCAST TRACE AND REVOKE

EPISODE: 1.5

YOU CAN (NOT) OPTIMIZE

 $TTct_1(\{\hat{\mathbf{y}}-\mathbf{y}\},\mu)$ $TTct_2(\{\hat{\mathbf{y}}-\mathbf{y}\},\mu)$

TTct...({最后一组 pk}, μ)

新 TTct

新 TTct

新 $\operatorname{Trace}^{D}(\{\operatorname{pk}_{j}\}_{j\in[N]},\mathbf{1}^{1/\epsilon^{*}})$ 考虑 $H_{i_{\perp}}$: $\{\operatorname{TTct}_{j}(\bot)\}_{j\leq i_{\perp}},\{\operatorname{TTct}_{j}(\mu)\}_{j>i_{\perp}}$

新 TTct

新 Trace^D($\{pk_j\}_{j\in[N]}$, $\mathbf{1}^{1/\epsilon^*}$)

考虑 $H_{i_{\perp}}$: {TTct_j(\perp)}_{j \leq i_{\psi}},{TTct_j(μ)}_{j \rangle i_{\psi}}

设 D 在 H_{i_1} 上的优势是 ε_{i_1}

• $\forall i_{\perp}$,可从 D 构造 $D_{i_{\perp}}$,使 $D_{i_{\perp}}$ 对 $TTct_{i_{\perp}}$ 的优势是 $(\varepsilon_{i_{\perp}-1} - \varepsilon_{i_{\perp}})$

 $TTct_1(\{\hat{\mathbf{y}}-\mathbf{y}\},\mu)$ $TTct_2(\{\hat{\mathbf{y}}-\mathbf{y}\},\mu)$

TTct...({最后一组 pk}, μ)

新 TTct

新 Trace $^{D}(\{pk_{i}\}_{i\in[N]},\mathbf{1}^{1/\varepsilon^{*}})$

考虑 H_{i_1} : {TTct $_i(\bot)$ } $_{i \le i_1}$,{TTct $_i(\mu)$ } $_{i > i_1}$

设 D 在 $H_{i_{\perp}}$ 上的优势是 $\varepsilon_{i_{\perp}}$

- $\forall i_{\perp}$,可从 D 构造 $D_{i_{\perp}}$,使 $D_{i_{\perp}}$ 对 $TTct_{i_{\perp}}$ 的优势是 $(\varepsilon_{i_{\perp}-1}-\varepsilon_{i_{\perp}})$
- $|\varepsilon_0| \geq \varepsilon^*$, $\varepsilon_N = 0$

 $TTct_1(\{\hat{\mathbf{y}}-\mathbf{y}\},\mu)$ $TTct_2(\{\hat{\mathbf{y}}-\mathbf{y}\},\mu)$

TTct...({最后一组 pk}, μ)

新 TTct

新 Trace $^{D}(\{pk_{i}\}_{i\in[N]},\mathbf{1}^{1/\varepsilon^{*}})$

考虑 H_{i} : $\{\mathrm{TTct}_{i}(\bot)\}_{i \leq i}$, $\{\mathrm{TTct}_{i}(\mu)\}_{i > i}$

设 D 在 $H_{i_{\perp}}$ 上的优势是 $\varepsilon_{i_{\perp}}$

- $\forall i_{\perp}$,可从 D 构造 $D_{i_{\perp}}$,使 $D_{i_{\perp}}$ 对 $TTct_{i_{\perp}}$ 的优势是 $(\varepsilon_{i_{\perp}-1} \varepsilon_{i_{\perp}})$
- $|\varepsilon_0| \ge \varepsilon^*$, $\varepsilon_N = 0$ $\Longrightarrow \exists i_{\perp}^* : |\varepsilon_{i_{\perp}^* 1} \varepsilon_{i_{\perp}^*}| \ge \varepsilon^* / \#[组数]$

新 TTct

新 Trace^D($\{pk_j\}_{j\in[N]}$, $\mathbf{1}^{1/\varepsilon^*}$)

考虑 $H_{i_{\perp}}$: {TTct_j(\perp)}_{j \leq i_{\psi}}, {TTct_j(μ)}_{j \rightarrow i_{\psi}}

设 D 在 $H_{i_{\perp}}$ 上的优势是 $\varepsilon_{i_{\perp}}$

- $\forall i_{\perp}$,可从 D 构造 $D_{i_{\perp}}$,使 $D_{i_{\perp}}$ 对 $TTct_{i_{\perp}}$ 的优势是 $(\varepsilon_{i_{\perp}-1}-\varepsilon_{i_{\perp}})$
- $|\varepsilon_0| \ge \varepsilon^*$, $\varepsilon_N = 0 \implies \exists i_{\perp}^* : |\varepsilon_{i_{\perp}^* 1} \varepsilon_{i_{\perp}^*}| \ge \varepsilon^* / \#[组数]$

$$\forall i_{\perp}$$
,运行**旧** Trace $^{D_{i_{\perp}}}\left(\{\hat{\mathbf{x}}\ i_{\perp}\ \mathbf{y}\},\mathbf{1}^{\#[\mathbf{y}]/\varepsilon^{*}}\right)$,汇总输出

 $TTct_1(\{\mathfrak{H}-\mathfrak{U},\mu)$ $TTct_2(\{\mathfrak{H}-\mathfrak{U},\mu)\}$

TTct...({最后一组 pk}, μ)

新 TTct

新 Trace^D({ \mathbf{pk}_i } $_{i \in [N]}$, $\mathbf{1}^{1/\varepsilon^*}$)

考虑 H_{i} : {TTct $_{i}(\perp)$ } $_{i \leq i}$, {TTct $_{i}(\mu)$ } $_{i > i}$

设 D 在 H_{i} 上的优势是 ε_{i}

- $\forall i_{\perp}$,可从 D 构造 $D_{i_{\parallel}}$,使 $D_{i_{\parallel}}$ 对 $TTct_{i_{\parallel}}$ 的优势是 $(\varepsilon_{i_{\parallel}-1}-\varepsilon_{i_{\parallel}})$
- $|\varepsilon_0| \ge \varepsilon^*$, $\varepsilon_N = 0 \implies \exists i_{\perp}^* : |\varepsilon_{i_{\perp}^* 1} \varepsilon_{i_{\perp}^*}| \ge \varepsilon^* / \#[组数]$

 $\forall i_{\perp}$,运行旧 Trace $^{D_{i_{\perp}}}\left(\{\hat{\mathbf{x}}\ i_{\perp}\ \text{组 pk}\},\mathbf{1}^{\#[\mathrm{44}]/\varepsilon^{*}}\right)$,汇总输出

#[组数] =
$$N^{\gamma}$$
 $|\text{ct}| = \Theta(N^{\gamma})$
 $T_{\text{Dec}} = \Theta(N^{1-\gamma})$

TTct₁({第一组 pk}, μ)

TTct₂({第二组 pk}, μ)

TTct...({最后一组 pk}, μ)

新 TTct

新 Trace^D({ \mathbf{pk}_i } $_{i \in [N]}$, $\mathbf{1}^{1/\varepsilon^*}$)

考虑 H_{i} : {TTct $_{i}(\perp)$ } $_{i \leq i}$, {TTct $_{i}(\mu)$ } $_{i > i}$

设 D 在 H_i 上的优势是 ε_i

- $\forall i_{\perp}$,可从 D 构造 $D_{i_{\parallel}}$,使 $D_{i_{\parallel}}$ 对 $TTct_{i_{\parallel}}$ 的优势是 $(\varepsilon_{i_{\parallel}-1}-\varepsilon_{i_{\parallel}})$
- $|\varepsilon_0| \ge \varepsilon^*$, $\varepsilon_N = 0 \implies \exists i_{\perp}^* : |\varepsilon_{i_{\perp}^* 1} \varepsilon_{i_{\perp}^*}| \ge \varepsilon^* / \# [组数]$

$$\forall i_{\perp}$$
,运行**旧** Trace $^{D_{i_{\perp}}}\left(\{\hat{\mathbf{x}}\ i_{\perp}\ \mathbf{y}\},\mathbf{1}^{\#[\mathbf{y}]/\varepsilon^{*}}\right)$,汇总输出

#[组数] =
$$N^{\gamma}$$

$$|ct| = \Theta(N^{\gamma})$$

$$T_{Dec} = \Theta(N^{1-\gamma})$$

必要之繁?

技巧匮乏?

定理. 任意可追踪的 AH-BTR 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$

传统叛徒追踪可以做到 $|pk|,|sk|,|ct|,T_{Dec}$ 同时是 O(1) 定理。任意**可追踪**的 AH-BTR 都必须满足 $\max|ct|\cdot\max T_{Dec}=\Omega(N)$

传统叛徒追踪可以做到 |pk|,|sk|,|ct|,T_{Dec} 同时是 O(1)

定理. 任意可追踪的 AH-BTR 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$

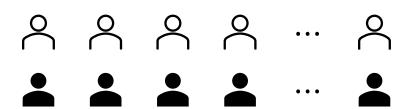
"罪魁祸首"是广播,而不是追踪

传统叛徒追踪可以做到 |pk|,|sk|,|ct|,T_{Dec} 同时是 O(1)

定理. 任意可追踪的 AH-BTR 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$

"罪魁祸首"是广播,而不是追踪

restricted BE 受限广播加密



传统叛徒追踪可以做到 |pk|,|sk|,|ct|,T_{Dec} 同时是 O(1)

定理. 任意可追踪的 AH-BTR 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$

"罪魁祸首"是广播,而不是追踪

restricted BE 受限广播加密

Gen(1^N)
$$\to$$
 mpk, $\{sk_{i,r}\}_{i \in [N], r \in \{0,1\}}$

传统叛徒追踪可以做到 |pk|,|sk|,|ct|,*T*_{Dec} 同时是 O(1)

定理. 任意可追踪的 AH-BTR 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$

"罪魁祸首"是广播,而不是追踪

restricted BE 受限广播加密

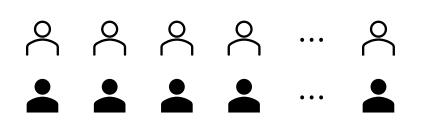
$$\label{eq:Gen} \begin{split} \text{Gen}(1^N) &\to \text{mpk,} \{\text{sk}_{i,r}\}_{i \in [N], r \in \{0,1\}} \\ \text{Enc}(\text{mpk,} R, \mu) &\to \text{ct}_R \end{split}$$

传统叛徒追踪可以做到 |pk|,|sk|,|ct|,*T*_{Dec} 同时是 O(1)

定理. 任意可追踪的 AH-BTR 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$

"罪魁祸首"是广播,而不是追踪

restricted BE 受限广播加密



传统叛徒追踪可以做到 |pk|,|sk|,|ct|,*T*_{Dec} 同时是 O(1)

定理. 任意可追踪的 AH-BTR 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$

"罪魁祸首"是广播,而不是追踪

restricted BE 受限广播加密 例. $R = 1001 \cdots 0$

例。
$$R = 1001 \cdots 0$$

$$\operatorname{Gen}(1^N) \to \operatorname{mpk}, \{\operatorname{sk}_{i,r}\}_{i \in [N], r \in \{0,1\}}$$
 $\operatorname{Enc}(\operatorname{mpk}, R, \mu) \to \operatorname{ct}_R$

$$\operatorname{Dec}^{\operatorname{mpk}, i, r, \operatorname{sk}_{i,r}, R, \operatorname{ct}_R}() \to \operatorname{ct} \ (若 R[i] = r)$$

传统叛徒追踪可以做到 |pk|,|sk|,|ct|,*T*_{Dec} 同时是 O(1)

定理. 任意可追踪的 AH-BTR 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$

"罪魁祸首"是广播,而不是追踪

restricted BE 受限广播加密

例。
$$R = 1001 \cdots 0$$

Gen(1^N)
$$\to$$
 mpk, $\{sk_{i,r}\}_{i \in [N], r \in \{0,1\}}$

$$\operatorname{Enc}(\operatorname{mpk}, R, \mu) \to \operatorname{ct}_R$$

(弱) 安全性. $\{R, i, \mu_0, \text{mpk, sk}_{i, \neg R[i]}, \text{ct}_R(\mu_0)\} \approx \{\dots, \text{ct}_R(\mu_1)\}$ 对所有 $N \leq \text{poly}(\lambda)$,其中 $R \stackrel{\$}{\leftarrow} \{0,1\}^N, i \stackrel{\$}{\leftarrow} [N], \mu_0 \stackrel{\$}{\leftarrow} \{0,1\}^\lambda, \mu_1 \stackrel{\$}{\leftarrow} \{0,1\}^\lambda.$

定理. 任意**弱安全**的**受限 BE** 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$,其中 T_{Dec} 只计读取 R 的位数

ABE 首个属性加密时空下界

定理. 任意**弱安全**的**受限 BE** 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$,其中 T_{Dec} 只计读取 R 的位数

ABE 首个属性加密时空下界

定理. 任意**弱安全**的**受限 BE** 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$,其中 T_{Dec} 只计读取 R 的位数

归约. AH-BTR → 受限 BE:

ABE 首个属性加密时空下界

定理. 任意**弱安全**的**受限 BE** 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$,其中 T_{Dec} 只计读取 R 的位数

归约. AH-BTR → 受限 BE:

 $RBEmpk = \{AHBTRpk_{j,s}\}_{j \in [N], s \in \{0,1\}}$

 $RBEsk_{j,s} = AHBTRsk_{j,s}$

 $RBEct_{R}(\mu) = AHBTRct(\{AHBTRpk_{j,R[j]}\}_{j \in [N]}, \mu)$

ABE 首个属性加密时空下界

定理. 任意**弱安全**的**受限 BE** 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$,其中 T_{Dec} 只计读取 R 的位数

归约. AH-BTR → 受限 BE:

```
RBEmpk = \{AHBTRpk_{j,s}\}_{j \in [N], s \in \{0,1\}}
```

 $RBEsk_{j,s} = AHBTRsk_{j,s}$

 $RBEct_{R}(\mu) = AHBTRct(\{AHBTRpk_{j,R[j]}\}_{j \in [N]}, \mu)$

解密用 AH-BTR 的算法,每次要读取 pk_i 时,

先读取 $r \leftarrow R[j]$ 再读取 AHBTRpk $_{j,r}$

ABE 首个属性加密时空下界

定理. 任意弱安全的受限 BE 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$,其中 T_{Dec} 只计读取 R 的位数

```
归约. AH-BTR ⇒ 受限 BE:
```

```
RBEmpk = \{AHBTRpk_{j,s}\}_{j \in [N], s \in \{0,1\}}

RBEsk<sub>j,s</sub> = AHBTRsk_{j,s} | RBEct| = |AHBTRct|

RBEct<sub>R</sub>(\mu) = AHBTRct(\{AHBTRpk_{j,R[j]}\}_{j \in [N]}, \mu)

解密用 AH-BTR 的算法,每次要读取 pk_j 时,

先读取 r \leftarrow R[j] 再读取 AHBTRpk_{j,r}
```

ABE 首个属性加密时空下界

定理. 任意**弱安全**的**受限 BE** 都必须满足 $\max|ct| \cdot \max T_{Dec} = \Omega(N)$,其中 T_{Dec} 只计读取 R 的位数

归约. AH-BTR ⇒ 受限 BE:

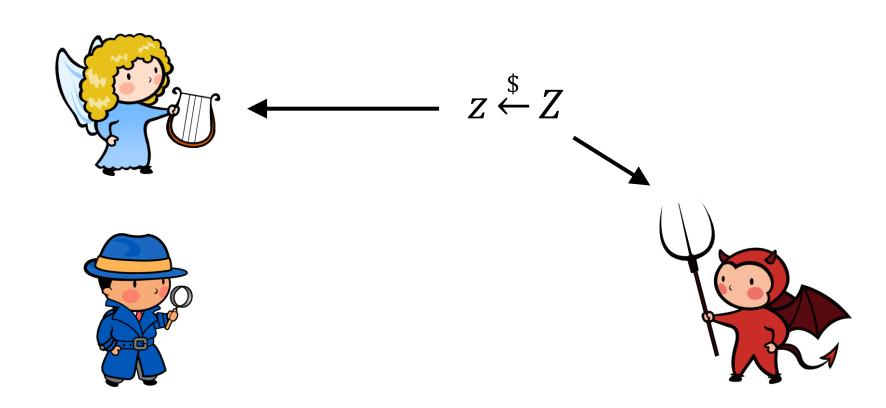
 $\begin{aligned} \text{RBEmpk} &= \{\text{AHBTRpk}_{j,s}\}_{j \in [N], s \in \{0,1\}} \\ \text{RBEsk}_{j,s} &= \text{AHBTRsk}_{j,s} & |\text{RBEct}| = |\text{AHBTRct}| \end{aligned}$

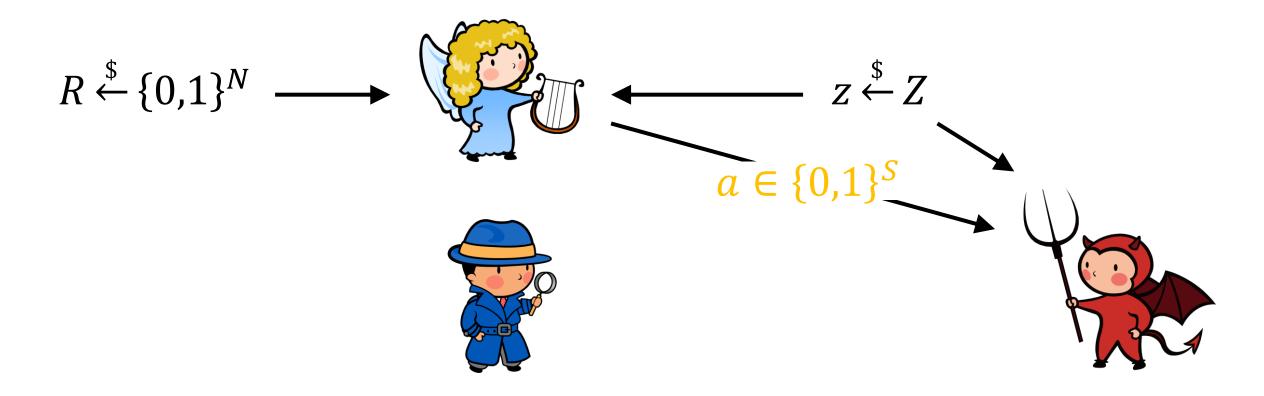
 $RBEct_{R}(\mu) = AHBTRct(\{AHBTRpk_{j,R[j]}\}_{j \in [N]}, \mu)$

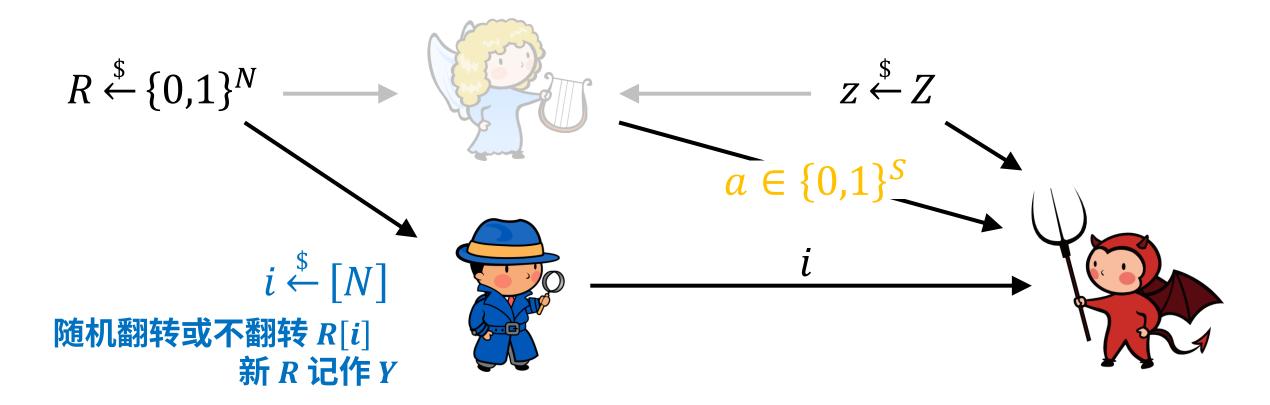
解密用 AH-BTR 的算法,每次要读取 pk_j 时,

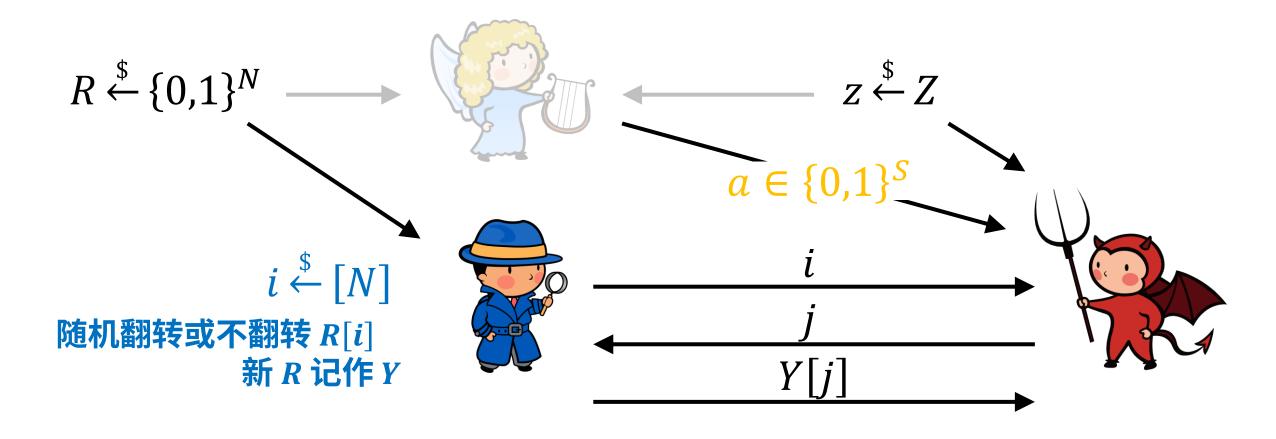
先读取 $r \leftarrow R[j]$ 再读取 AHBTRpk $_{j,r}$

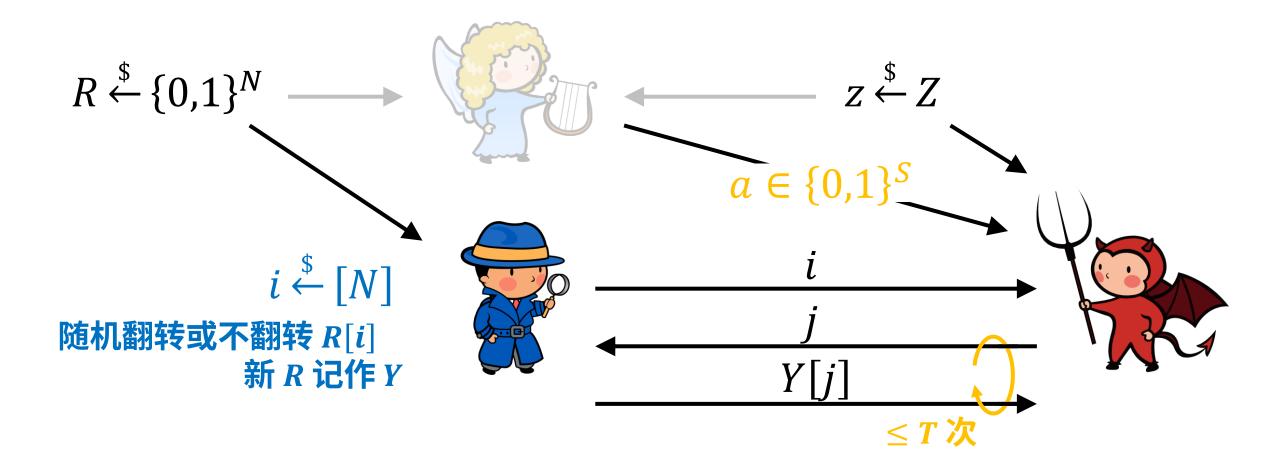
受限 BE 解密读取 R 的位数 = AH-BTR 解密读取诸 pk 的总位数 \leq AH-BTR 解密时间

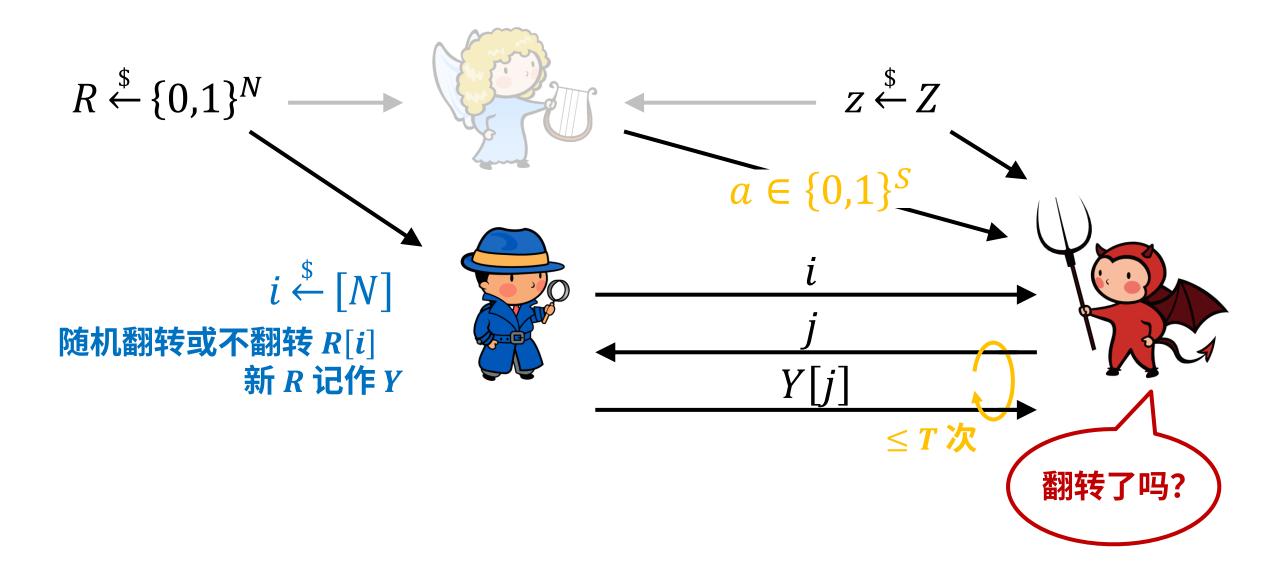


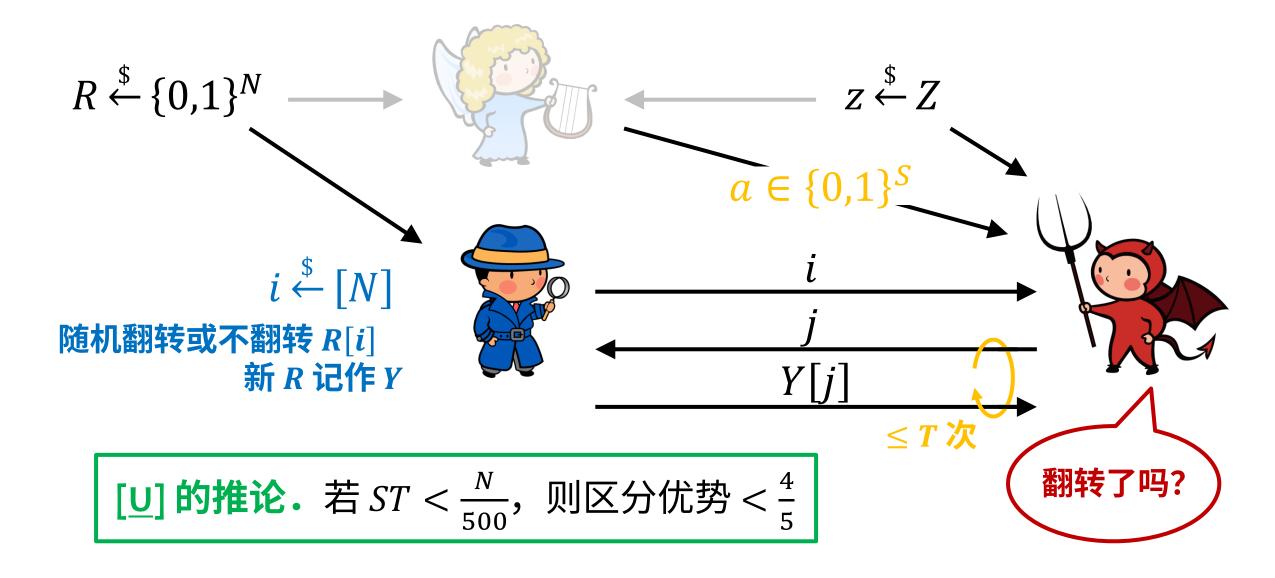












若 $|ct| \cdot (T_{Dec} + 1) < N/500$ (暂设 |ct|, T_{Dec} 不受随机数影响),**欲证不安全**

若 $|ct| \cdot (T_{Dec} + 1) < N/500$ (暂设 |ct|, T_{Dec} 不受随机数影响),<mark>欲证不安全</mark>

adversarial strategy

使坏策略. 收到 $\{R, i, \mu_0, \text{mpk}, \text{sk}_{i, \neg R[i]}, \text{ct}_R\}$ 后,需要判断 ct_R 加密的是 μ_0 还是 μ_1 .

若 $|ct| \cdot (T_{Dec} + 1) < N/500$ (暂设 |ct|, T_{Dec} 不受随机数影响),<mark>欲证不安全</mark>

adversarial strategy

使坏策略. 收到 $\{R, i, \mu_0, \text{mpk}, \text{sk}_{i, \neg R[i]}, \text{ct}_R\}$ 后,

需要判断 ct_R 加密的是 μ_0 还是 μ_1 .

做法: 翻转 R[i] (新 R 记作 R') 后"强行解密"

 $\mu' \leftarrow \text{Dec}^{\text{mpk},i,r=R'[i]=\neg R[i],\text{sk}_{i,r},R',\text{ct}_R}()$

判定 ct_R 加密了 μ_0 当且仅当 $\mu' = \mu_0$.

若 $|ct| \cdot (T_{Dec} + 1) < N/500$ (暂设 |ct|, T_{Dec} 不受随机数影响),**欲证不安全**

adversarial strategy

使坏策略. 收到 $\{R, i, \mu_0, \text{mpk}, \text{sk}_{i, \neg R[i]}, \text{ct}_R\}$ 后,

需要判断 ct_R 加密的是 μ_0 还是 μ_1 .

做法: 翻转 R[i] (新 R 记作 R') 后"强行解密"

 $\mu' \leftarrow \text{Dec}^{\text{mpk},i,r=R'[i]=\neg R[i],\text{sk}_{i,r},R',\text{ct}_R()}$ 判定 ct_R 加密了 μ_0 当且仅当 $\mu' = \mu_0$.

若 ct_R 加密了 μ_1 ,则 μ' 和 μ_0 独立,故 $\Pr[\mu' = \mu_0] \leq 2^{-\lambda}$

若 $|ct| \cdot (T_{Dec} + 1) < N/500$ (暂设 |ct|, T_{Dec} 不受随机数影响),**欲证不安全**

adversarial strategy

使坏策略. 收到 $\{R, i, \mu_0, \text{mpk}, \text{sk}_{i, \neg R[i]}, \text{ct}_R\}$ 后,

需要判断 ct_R 加密的是 μ_0 还是 μ_1 .

做法: 翻转 R[i] (新 R 记作 R') 后"强行解密"

 $\mu' \leftarrow \text{Dec}^{\text{mpk},i,r=R'[i]=\neg R[i],\text{sk}_{i,r},R',\text{ct}_R}()$

判定 ct_R 加密了 μ_0 当且仅当 $\mu' = \mu_0$.

若 ct_R 加密了 μ_1 ,则 μ' 和 μ_0 独立,故 $\Pr[\mu' = \mu_0] \le 2^{-\lambda}$

若 ct_R 加密了 μ_0 , 欲证 $\Pr[\mu' = \mu_0] \geq \frac{1}{5}$

若 $|ct| \cdot (T_{Dec} + 1) < N/500$ (暂设 $|ct|, T_{Dec}$ 不受随机数影响),**欲证不安全**

adversarial strategy

使坏策略. 收到 $\{R, i, \mu_0, \text{mpk}, \text{sk}_{i,\neg R[i]}, \text{ct}_R\}$ 后,

需要判断 ct_R 加密的是 μ_0 还是 μ_1 .

做法: 翻转 R[i] (新 R 记作 R') 后"强行解密"

 $u' \leftarrow \text{Dec}^{\text{mpk},i,r=R'[i]=\neg R[i],\text{sk}_{i,r},R',\text{ct}_R()}$

判定 ct_R 加密了 μ_0 当且仅当 $\mu' = \mu_0$.

若 ct_R 加密了 μ_1 ,则 μ' 和 μ_0 **独立**,故 $\Pr[\mu' = \mu_0] \leq 2^{-\lambda}$

若 ct_R 加密了 μ_0 , 欲证 $\Pr[\mu' = \mu_0] \geq \frac{1}{5}$

26 / 32

若
$$\operatorname{ct}_R$$
 加密了 μ_0 , **欲证** $\Pr[\mu' = \mu_0] \ge \frac{1}{5}$

思路。利用 AI-ROM 推论,从 $\operatorname{sk}_{i,R[i]}$ 能解密(正确性)推出 $\operatorname{sk}_{i,\neg R[i]}$ 能解密

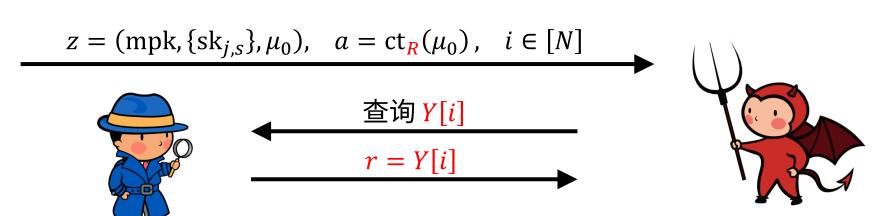
若
$$\operatorname{ct}_R$$
 加密了 μ_0 , **欲证** $\Pr[\mu' = \mu_0] \ge \frac{1}{5}$

思路. 利用 AI-ROM 推论,从 $\operatorname{sk}_{i,R[i]}$ 能解密(正确性)推出 $\operatorname{sk}_{i,\neg R[i]}$ 能解密

$$z = (\text{mpk}, \{\text{sk}_{j,s}\}, \mu_0), \quad a = \text{ct}_{\mathbb{R}}(\mu_0), \quad i \in [N]$$

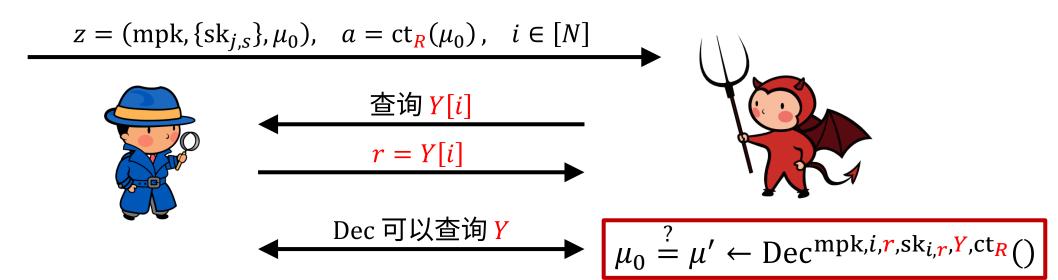
若
$$\operatorname{ct}_R$$
 加密了 μ_0 , **欲证** $\Pr[\mu' = \mu_0] \ge \frac{1}{5}$

思路。利用 AI-ROM 推论,从 $\operatorname{sk}_{i,R[i]}$ 能解密(正确性)推出 $\operatorname{sk}_{i,\neg R[i]}$ 能解密



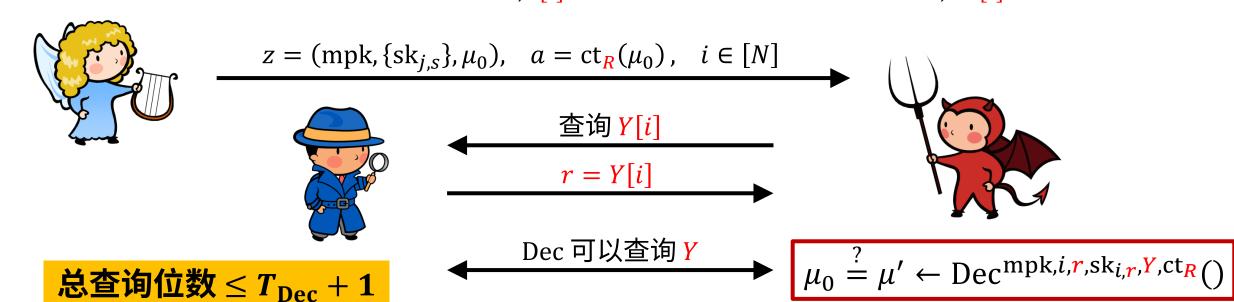
若
$$\operatorname{ct}_R$$
 加密了 μ_0 , **欲证** $\Pr[\mu' = \mu_0] \ge \frac{1}{5}$

思路。利用 AI-ROM 推论,从 $\operatorname{sk}_{i,R[i]}$ 能解密(正确性)推出 $\operatorname{sk}_{i,\neg R[i]}$ 能解密



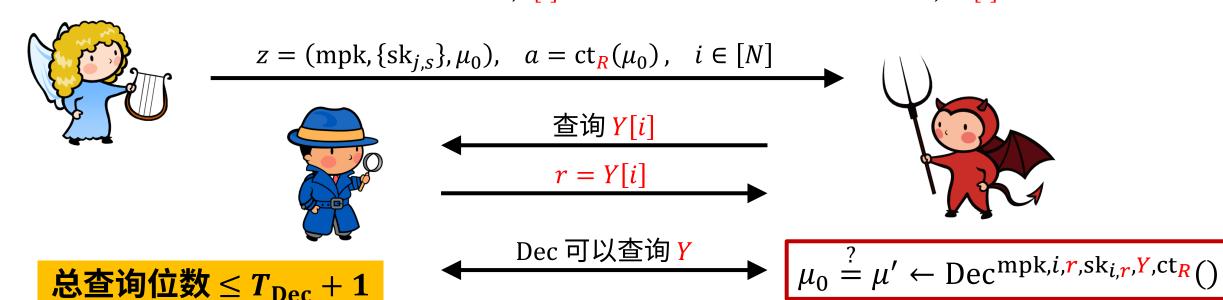
若
$$\operatorname{ct}_R$$
 加密了 μ_0 , 欲证 $\Pr[\mu' = \mu_0] \ge \frac{1}{5}$

思路。利用 AI-ROM 推论,从 $\operatorname{sk}_{i,R[i]}$ 能解密(正确性)推出 $\operatorname{sk}_{i,\neg R[i]}$ 能解密



若 ct_R 加密了 μ_0 , **欲证** $\Pr[\mu' = \mu_0] \geq \frac{1}{5}$

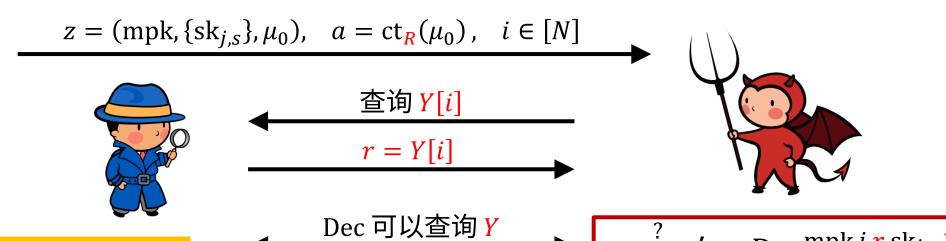
思路。利用 AI-ROM 推论,从 $\operatorname{sk}_{i,R[i]}$ 能解密(正确性)推出 $\operatorname{sk}_{i,\neg R[i]}$ 能解密



当 Y 为 R 本身时,由**正确性** $Pr[\mu' = \mu_0] = 1$

若 ct_R 加密了 μ_0 , **欲证** $\Pr[\mu' = \mu_0] \geq \frac{1}{5}$

思路。利用 AI-ROM 推论,从 $\operatorname{sk}_{i,R[i]}$ 能解密(正确性)推出 $\operatorname{sk}_{i,\neg R[i]}$ 能解密



总查询位数 $\leq T_{\text{Dec}} + 1$

当
$$Y$$
 为 R 本身时,由**正确性** $\Pr[\mu' = \mu_0] = 1$ 当 Y 为 R 翻转时,由推论知 $\Pr[\mu' = \mu_0] \ge 1 - \frac{4}{5}$

若 ct_R 加密了 μ_0 , **欲证** $\Pr[\mu' = \mu_0] \geq \frac{1}{5}$

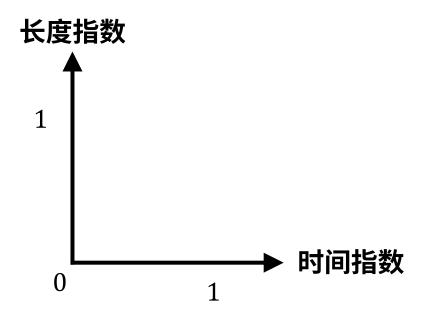
 $\mu_0 \stackrel{f}{=} \mu' \leftarrow \text{Dec}^{\text{mpk},i,r,\text{Sk}_{i,r},\text{Y},\text{ct}_R}$

总结

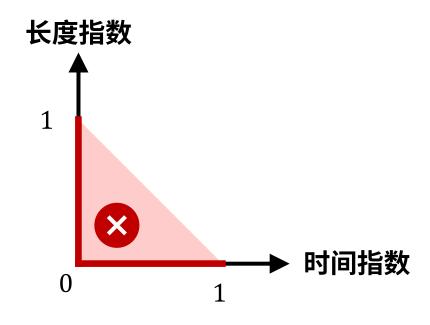
成果. 定义、构造 AH-BTR,证明了效率下界,完全刻画 Pareto 最优效率前沿

总结

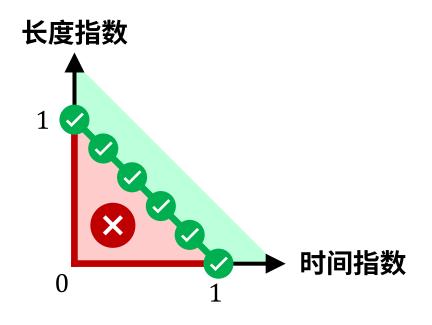
成果. 定义、构造 AH-BTR,证明了效率下界,完全刻画 Pareto 最优效率前沿



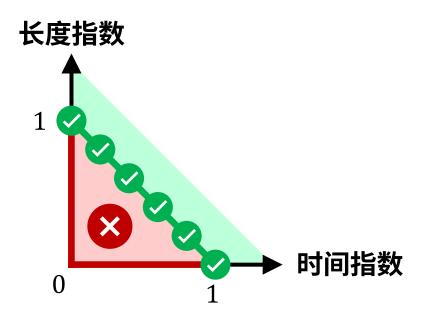
成果. 定义、构造 AH-BTR,证明了效率下界,完全刻画 Pareto 最优效率前沿



成果. 定义、构造 AH-BTR,证明了效率下界,完全刻画 Pareto 最优效率前沿



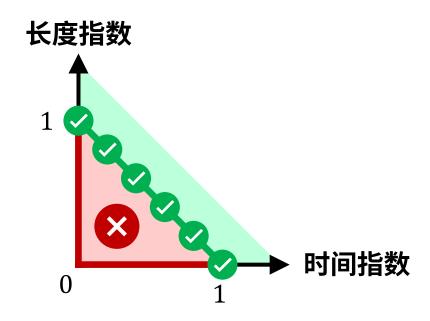
成果. 定义、构造 AH-BTR,证明了效率下界,完全刻画 Pareto 最优效率前沿



未解问题.

1. 本作要用程序混淆的"大炮",如何基于更弱的假设构造 AH-BTR?

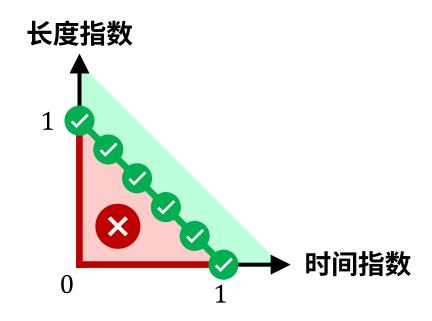
成果. 定义、构造 AH-BTR,证明了效率下界,完全刻画 Pareto 最优效率前沿



未解问题.

- 1. 本作要用程序混淆的"大炮",如何基于更弱的假设构造 AH-BTR?
- 2. 其他叛徒追踪(白盒、量子等)的自组型方案的研究?

成果. 定义、构造 AH-BTR,证明了效率下界,完全刻画 Pareto 最优效率前沿



未解问题.

- 1. 本作要用程序混淆的"大炮",如何基于更弱的假设构造 AH-BTR?
- 2. 其他叛徒追踪(白盒、量子等)的自组型方案的研究?
- 3. 已经刻画了 BE 的 Pareto 最优效率前沿,一般的 ABE 和 FE 呢? [JLL]

(**2021**-01前)

想要**单作者论文**

(**2021**-01前) (2021-06) NTT Research 实习 做**叛徒追踪**的工作

想要**单作者论文**

(2021-01 前) (2021-06) (2022-02)
NTT Research 实习 <u>摸鱼</u>得到**课题灵感**想要**单作者论文** 做**叛徒追踪**的工作 并给出**构造**

(**2021**-01前)

(2021-06)

(2022-02)

(2022-03)

想要**单作者论文**

NTT Research 实习 做**叛徒追踪**的工作 <u>摸鱼</u>得到**课题灵感** 并给出**构造** 在 UW 密码学**讨论班**讲了进展 并**抛出**了**下界的问题**

(2021-01前)

(2021-06)

(**2022**-02)

(2022-03)

想要**单作者论文**

NTT Research 实习 做**叛徒追踪**的工作 <u>摸鱼</u>得到**课题灵感** 并给出**构造** 在 UW 密码学**讨论班**讲了进展 并**抛出**了**下界的问题**

课题与 AI-ROM 有关

(2022-05)

 (2021-01 前)
 (2021-06)
 (2022-02)
 (2022-03)

 NTT Research 实习
 摸鱼得到课题灵感
 在 UW 密码学讨论班讲了进展

 想要单作者论文
 做叛徒追踪的工作
 并给出构造
 并抛出了下界的问题

 (2021-01 前)
 (2021-06)
 (2022-02)
 (2022-03)

 NTT Research 实习
 摸鱼得到课题灵感
 在 UW 密码学讨论班讲了进展

 想要单作者论文
 做叛徒追踪的工作
 并给出构造
 并抛出了下界的问题

 (2021-01 前)
 (2021-06)
 (2022-02)
 (2022-03)

 NTT Research 实习 想要**单作者论文** 模鱼得到课题灵感 在 UW 密码学讨论班讲了进展 并给出构造 并抛出了下界的问题

 (2021-01 前)
 (2021-06)
 (2022-02)
 (2022-03)

 NTT Research 实习
 摸鱼得到课题灵感
 在 UW 密码学讨论班讲了进展

 想要单作者论文
 做叛徒追踪的工作
 并给出构造
 并抛出了下界的问题

- 技巧积累、功不唐捐
 - 我认为本作构造相当朴素,技巧前作都熟知, 但仔细想的话,学会这些技巧确实费了一番功夫

• 技巧积累、功不唐捐

- 我认为本作构造相当朴素,技巧前作都熟知, 但仔细想的话,学会这些技巧确实费了一番功夫
- 有些技巧是以前尝试某些"死胡同"课题时学会的, 撞南墙的时间并不白费,新学的技巧以后可能有用

• 技巧积累、功不唐捐

- 我认为本作构造相当朴素,技巧前作都熟知, 但仔细想的话,学会这些技巧确实费了一番功夫
- 有些技巧是以前尝试某些"死胡同"课题时学会的, 撞南墙的时间并不白费,新学的技巧以后可能有用

陈酿

目前的定义是修订过四五轮的结果,写下来之时、之后,可能有新想法浮现

• 技巧积累、功不唐捐

- 我认为本作构造相当朴素,技巧前作都熟知, 但仔细想的话,学会这些技巧确实费了一番功夫
- 有些技巧是以前尝试某些"死胡同"课题时学会的, 撞南墙的时间并不白费,新学的技巧以后可能有用

陈酿

目前的定义是修订过四五轮的结果, 写下来之时、之后,可能有新想法浮现

• 念念不忘,必有回响

> 探究其他问题可能对之前搁置的问题产生启发

再谈、再探"火热的思考"

- X 学术写作 编造"完美故事"(冰冷的美丽)
- ✓ 已有的尝试 写博客、在一些报告中讲"史实"

再谈、再探"火热的思考"

- X 学术写作 编造"完美故事"(冰冷的美丽)
- ✓ 已有的尝试 写博客、在一些报告中讲"史实"
- ✓ 本次新尝试 论文修改过程开源
- 未来可尝试 CFAIL

谢谢!

IACR ePrint <u>2022/925</u>

GitHub <u>GeeLaw/ahbtr</u>

哔哩哔哩 (无回放,忘记录音了)

luoji@cs.washington.edu
luoji.bio