泛函加密,代价几何?[◎] 谈泛函加密、属性加密的最优时空效率[□]

Aayush Jain[™]

Rachel Lin M 蒸佳

罗辑∞●

Carnegie Mellon University

UNIVERSITY of WASHINGTON

2023年5月11日@上海交通大学

- 偏泛函加密
- 动机、问题

• 成果介绍

定义、目标

- 必要之繁
- 技巧匮乏
- 偏泛函加密
- 核心工具
- 未解问题

时空效率下界证明一瞥 与 DE-PIR 的联系 定义细节 凝练乱码 RAM

部分保密的泛函加密(partially hiding functional encryption)

偏泛函加密实现泛函加密(functional encryption)

偏泛函加密实现属性加密(attribute-based encryption)

偏泛函加密的安全性

偏泛函加密的安全性:抗乌合(collusion resistance)

7/44

选择明文攻击下密文不可区分(IND-CPA)

$\mathbf{\ddot{\pi}}|y_{\mathbf{0}}| = |y_{\mathbf{1}}| \mathbf{\mathbf{1}} \forall q: f_q(x, y_{\mathbf{0}}) = f_q(x, y_{\mathbf{1}}) \mathbf{\mathbf{U}} \operatorname{Exp}_{PHFE}^{\mathbf{0}} \approx \operatorname{Exp}_{PHFE}^{\mathbf{1}}$

★ 多: 支持各种复杂函数

★ 省: 短密钥、短密文
 |sk_f| = poly(|f|)
 |ct_x(y)| = poly(|x|, |y|)
 ★ 快: 快速解密
 T_{Dec} = poly(|f|, |x|, |y|, T)

★ 多: 支持各种复杂函数

支持**输出长度无限制**、 random-access machine 用**随机访问机**表示的函数

理想标的

★ 好: 适应性安全、基于弱假设

偏泛函加密能有多高效?

不同效率参数间是否 "鱼与熊掌,不可兼得"?

(基于何种假设、) 如何构造<mark>效率最优</mark>的偏泛函加密?

本作成果:近最优偏泛函加密

(适用于电路、选择性安全、单密钥 FE,满足 $T_{\text{Enc}} = |f|^{1-\varepsilon}$) "能用来实现程序混淆"的 FE [前人之述备矣] → 多项式安全、适用于电路的 FE ⇒ 适应性安全、适用于 RAM 的 PHFE, 效率: |mpk| = O(1), $|sk_f| = O(1)$, $|ct_x(y)| = \frac{2}{2}|y| + O(1)$, $T_{\text{KeyGen}} = O(|f|), \quad T_{\text{Enc}} = O(|x| + |y|),$ $T_{\rm Dec} = O(T + |f| + |x| + |y|)$

几项 FE 方面的相关工作

支持		适应性 安全	sk _f	$ \operatorname{ct}_{x}(y) $	T_{Dec}	需要的假设
RAM 输出长度无限制	本作	~	0(1)	2 y + 0(1)	O(T + f + x)	+ y) FE
RAM	<u>ACFQ</u>		poly(f)	poly(y)	$T \operatorname{poly}(f)$	PK-DE-PIR + FE
Turing 机	<u>AS</u>	\checkmark	poly(f)	poly(y)	$T \operatorname{poly}(f , y)$	iO
	<u>AJS</u>	\checkmark	c f + 0(1)	c y + O(1)	$T \operatorname{poly}(f , y)$	subexp <i>iO</i>
	<u>AM</u>	\checkmark	poly(f)	O(y)	$T \operatorname{poly}(f , y)$	dist. ind. FE
	<u>KNTY</u>		poly(f)	poly(y)	$T \operatorname{poly}(f , y)$	1-key sel. FE
电路	<u>GGHRSW</u>		poly(C)	poly(y)	poly(C)	iO
	<u>KNTY</u>	\checkmark	poly(C)	poly(y)	poly(C)	1-key sel. FE
	<u>GWZ</u>		poly(C)	y + 0(1)	poly(C)	iO

效率大	幅改计		"两朵	。乌云"		
支持		适应性 安全	$ \mathrm{sk}_{f} $	$ \operatorname{ct}_x(y) $	$T_{\rm Dec}$	需要的假设
RAM 输出长度无限制	本作	~	0(1)	2 y + 0(1)	O(T + f + x)	+ y FE
RAM	ACFQ		poly(<i>f</i>)	poly(y)	$T \operatorname{poly}(f)$	PK-DE-PIR + FE
Turing 机	AS	\checkmark	poly(<i>f</i>)	poly(y)	$T \operatorname{poly}(f , y)$	iO
	AJS				T poly($ f $, $ y $)	subexp <i>iO</i>
	AM		多坝式效学	些改进到 近 重		dist. ind. FE
	KNTY		poly(<i>f</i>)	poly(y)	T poly(f , y)	1-key sel. FE
电路	GGHRSW		poly(<i>C</i>)	poly(y)	poly(<i>C</i>)	iO
	KNTY	\checkmark	poly(<i>C</i>)	poly(y)	poly(<i>C</i>)	1-key sel. FE
	<u>GWZ</u>		poly(<i>C</i>)	y + 0(1)	poly(<i>C</i>)	iO
			V Ī	可以得到:放弃	适 <mark>应性安全</mark> 且限制输	出长度

14 / 44

本作成果: (PH-)FE 时空效率下界(无条件成立) 首个 (PH-)FE 时空效率权衡下界 对任意适用于 RAM 的 FE 和 PHFE,若 $|\mathbf{sk}_{f}| = O(|f|^{A}), \quad T_{\text{Dec}} = (T + |f|^{B} + |y|) O(|x|^{C})$ 则 $A \ge 1$ 或 $B \ge 1$. 对任意适用于 RAM 的 PHFE,若 $|ct_x(y)| = O(|x|^A |y|^C), \quad T_{Dec} = (T + |f| + |x|^B) O(|y|^C)$ 则 $A \ge 1$ 或 $B \ge 1$. "密钥密文长度、解密时间 y 呢? 又若考虑线性长度, 不能同时关于 f,x 次线性。" 可以得到最优解密时间吗? 答案与 DE-PIR 有关. 这两个下界对极选择性安全、单密钥、单密文、私钥方案 garbling (即**乱码化**)也成立,而且只用到**相当简单**的函数.

doubly efficient private information retrieval 双重高效隐私信息检索

客户端高效	$ k = O(1) \mathbf{\Xi} T_{\text{Query}} = O(D ^{1-\varepsilon})$
服务端高效	$T_{\text{Resp}} = O(D ^{1-\varepsilon})$
安全	\widetilde{D} , {ct(i_q)} 隐藏 { i_q } 说来话长
效率理想型	$ \widetilde{D} = O(D) \blacksquare T_{\text{Query}}, T_{\text{Resp}} = O(1)$
	这能构造出吗?

本作成果: 最速解密蕴涵着 DE-PIR

若 PHFE 满足

若 PHFE 满足

 $\begin{aligned} |ct_{x}(y)| &= |x|^{A} \operatorname{poly}(|y|), \ T_{\operatorname{Dec}} = |x|^{B} \operatorname{poly}(T, |f|, |y|), \\ & \text{id} \\ |ct_{x}(y)| &= |y|^{A} \operatorname{poly}(|x|), \ T_{\operatorname{Dec}} = |y|^{B} \operatorname{poly}(T, |f|, |x|), \\ & \text{其中 } B < 1, \ \text{则存在着如下效率的私钥 DE-PIR:} \\ |\widetilde{D}| &= |D| + O(|D|^{A}), \ T_{\operatorname{Query}} = O(1), \ T_{\operatorname{Resp}} = O(|D|^{B}). \end{aligned}$

本作成果:适用于 RAM、常数额外开销的 iO 和 ABE

	适用于 RAM 的 ABE	$ \mathrm{sk}_{f} $	$ ct_{\chi} $	$T_{\rm Dec}$	
	PHFE 的直接推论	0(1)	0(1)	0(T + f + x))
四个 结论!		f + 0(1)	0(1)	O(T + x)	时空开销可互换
	1010一 1410	f + 0(1)	x + O(1) x + O(1)	$0(T + f)$ $0(T) \times [Luo22]$	22]证明了
	(适应性安全, 基于电路 FE)			C	$\mathbf{t} \cdot \boldsymbol{T}_{\mathrm{Dec}} = \boldsymbol{\Omega}(\boldsymbol{x})$

新

目前的知识边界: ABE

画面上缺少两个形象,是什么? 答案:一休、晴天娃娃.

- 偏泛函加密
- 动机、问题
- 成果介绍

- 必要之繁
- 技巧匮乏
- 偏泛函加密
- 核心工具
- 未解问题

时空效率下界证明一瞥 与 DE-PIR 的联系 定义细节 凝练乱码 RAM

定义、目标

时空权衡下界证明一瞥:参数设置

 $|sk_f| = |f|^A, \qquad T_{Dec} = T + |f|^B + |x| + |y|, \qquad A, B < 1.$ $= N^A \ll n \qquad = n + N^B + 0 + n \approx n \ll N$

 $\langle \mathbf{R}^A, N^B \ll n \ll N$

$$\begin{split} f &= R \in \{0,1\}^N, \quad \begin{array}{l} I \subseteq [N] \not \equiv n \uparrow \neg \overleftarrow{k} \quad w \in \{0,1\}^n \\ x &= \bot, \quad y_0 = (I,w), \quad y_1 = z. \\ f &= (x,y) = \begin{cases} R[I] \oplus w, & y = (I,w); \\ z, & y = z. \end{cases} \\ \end{split}$$

若加密的是 $y = y_0 = (I, w)$:

运行 $Dec^{R}(sk_{f}, ct) \oplus w$ 会得到 R[I],这有 n 位信息 Usk_{f}, ct, w 只含 $|sk_{f}| \ll n$ 位(很少)关于 R[I] 的信息 解密算法必须**大量读取** R[I]

$$f_R(x,y) = \begin{cases} R[I] \oplus w, & y = y_0 = (I,w); \\ z, & y = y_1 = z. \end{cases}$$

选择随机的 *I*, *w* 并令 *z* = *R*[*I*] ⊕ *w*

 $|\mathrm{sk}_f| \ll n$, $T_{\rm Dec} \ll N$.

若加密的是 $y = y_1 = z$:

注意 *I* 在 *R*, sk_f, ct 里**只出现**在明文 $z = R[I] \oplus w$ 中 一次性密钥w完美掩盖了I所以 $Dec^{R}(sk_{f}, ct)$ 的行为和 I 独立 由于时间限制,最多读取 R 中的 $T_{\text{Dec}} \ll N$ 位 因此大部分 R[I] 都没读取 (不放回抽样、超几何分布)

$$f_R(x,y) = \begin{cases} R[I] \oplus w, & y = y_0 = (I,w); \\ z, & y = y_1 = z. \end{cases}$$

选择随机的 I.w

并令 $z = R[I] \oplus w$

运行 Dec^R(sk_f, ct) 时 解密算法大量读取 R[I] 吗?

"编码长度不能小于消息长度"的定量版本
引理.若
$$\log_2 |V| \le -\lambda + \log_2 |U|$$
则
 $\Pr[D(E(u,s),s) = u] \le 2^{-\lambda}.$
 $u \stackrel{\$}{\leftarrow} U$
 $s \stackrel{\$}{\leftarrow} S$

时空权衡下界证明一瞥:压缩论证(情况一)

• sk 与 *R* ∈ {0,1}^N 关联

回顾. $f_R(I, w) = R[I] \oplus w$

• ct 加密了 (I, w), 其中 $|I| = n, w \in \{0,1\}^n$

• $|sk_f| \ll n$ (暂设为定长)

欲证. Dec^{*R*}(sk_{*f*}, ct) 以 > 99% 的概率读取 *R*[*I*] 的 ≥ (*n* – |sk_{*f*}| – 6) 位 反证. 假设此算法以 ≥ 1% 的概率只读取 ≤ (*n* – |sk_{*f*}| – 7) 位

共享随机数 $s = (I, w, R[\notin I], 密码算法所需要的随机数)$ 消息 $u \in \{0,1\}^n$ 编码 v 长度是 $|sk_f| + (n - |sk_f| - 7) = n - 7$

编码方法.

- 令 *R*[*I*] = *u*,
 结合 *s* 中的 *R*[∉ *I*],
 则 *R* 已经完全定义
 使用 *s* 中的随机数计算 sk_f, ct
- 3. 把 sk_f 作为 v 的第一部分

4. 运行 Dec^R(sk_f, ct),每次算法
 读取 R[I] 中新的一位时,
 把这一位放入 v 的第二部分

compression argument 时空权衡下界证明一瞥:压缩论证(续)

• sk 与 *R* ∈ {0,1}^N 关联

- 回顾. $f_R(I, w) = R[I] \oplus w$ ct 加密了 (I, w), 其中 $|I| = n, w \in \{0, 1\}^n$
 - |sk_f| << n (暂设为定长)

欲证. Dec^R(sk_f, ct) 以 > 99% 的概率读取 R[I] 的 ≥ $(n - |sk_f| - 6)$ 位 反证. 假设此算法以 $\geq 1\%$ 的概率只读取 $\leq (n - |sk_f| - 7)$ 位

共享随机数 s = (I, w, R[∉ I], 密码算法所需要的随机数)消息 $u \in \{0,1\}^n$ 编码 $v = (sk_f, 解密所读取 R[I] 的部分) \in \{0,1\}^{n-7}$

解码方法.

- 1. 使用 s 中的随机数重新计算 ct
- 2. 从*s*读取*w*,从*v*读取sk_f
- 3. 运行 Dec^R(sk_f, ct), 读取 R 的处理见右侧

- i. *R*[∉ *I*]从*s*中读取
- ii. *R*[*I*] 中新的一位从 *v* 中读取
- iii. R[I] 重复读取时不必"消耗" v 4. 解密结果记作 z,输出 $z \oplus w$

读取 ≤ $(n - |sk_f| - 7)$ 位 ⇒ v 未曾截断 ⇒ 解码结果是 $(R[I] \oplus w) \oplus w = u$

compression argument 时空权衡下界证明一瞥:压缩论证(完)

- sk 与 *R* ∈ {0,1}^N 关联
- 回顾. $f_R(I, w) = R[I] \oplus w$ ct 加密了 (I, w), 其中 $|I| = n, w \in \{0, 1\}^n$
 - $|sk_f| \ll n$ (暂设为定长)

欲证. Dec^{*R*}(sk_f, ct) 以 > 99% 的概率读取 *R*[*I*] 的 ≥ $(n - |sk_f| - 6)$ 位 反证. 假设此算法以 ≥ 1% 的概率只读取 ≤ $(n - |sk_f| - 7)$ 位

共享随机数 $s = (I, w, R[\notin I], 密码算法所需要的随机数)$ 消息 $u \in \{0,1\}^n$ 编码 $v = (sk_f, 解密所读取 R[I] 的部分) \in \{0,1\}^{n-7}$

引理表明
$$\frac{1}{128} = 2^{-7} \ge \Pr[正确解码] \ge \Pr[读取 \le (n - |sk_f| - 7) \acute{\Box}] \ge 0.01 = \frac{1}{100}$$
. ↓

读取 ≤ $(n - |sk_f| - 7)$ 位 ⇒ v 未曾截断 ⇒ 解码结果是 $(R[I] \oplus w) \oplus w = u$

时空权衡下界证明一瞥:论证收尾

 $|\mathrm{sk}_f| \ll n$, $T_{\mathrm{Dec}} \ll N$.

若加密的是 $y = y_0 = (I, w)$:

 $\Pr[ikitightarrow n/2] ≥ \Pr[ikitightarrow n/2] ≥ \Pr[ikitightarrow n/2] > 99\%$

若加密的是 $y = y_1 = z$:

$$\mathbb{E}[
 读
 取] ≤ \frac{|I| \cdot T_{\text{Dec}}}{N} ≤ \frac{n}{200}, \text{ the Markov 不等式}$$
 $\Pr[
 读
 \scale \scale n/2] ≤ \frac{1/200}{1/2} = 1\%$

时空权衡下界证明一瞥: 结论

 $|sk_f| = |f|^A$, $T_{Dec} = T + |f|^B + |x| + |y|$, A, B < 1.

这样的 (PH-)FE 不可能安全!

最速解密蕴涵 DE-PIR

 $|\mathrm{sk}_f| = |f|^A,$ $T_{\text{Dec}} = |f|^{B} \operatorname{poly}(T, |x|, |y|),$ B < 1. $f_D(x, y) = D[i].$ f = D, $x = \bot$, y = i, $\widetilde{D} = (D, \operatorname{fesk}_f), \quad k = \operatorname{fempk}.$ 预处理. $|\widetilde{D}| = |D| + |D|^A$ 查询. ct = fect(i). $T_{\text{Query}} = 0(1)$ $Dec^{D}(fesk_{f}, fect)$. 答复. $T_{\text{Resp}} = |D|^B$

▲ 不可区分安全性、选择性安全、不隐藏查询结果、(私钥方案) 不隐藏数据库

✓ 选择性安全蕴含着适应性安全 保高效的一般变换:模拟安全性、隐藏查询结果、(私钥方案)隐藏数据库

隐藏查询结果(查两次)

要处理数据库 D (长度 n),去处理 D' = $D\overline{D}$

查询 *D*[*i*] 时随机选一种:

- 先查询 D'[i] 再查询 D'[n + i] 查询结果等概率 为01或10
- 先查询 *D*′[*n* + *i*] 再查询 *D*′[*i*]

收到回复后保留 D'[i] 即可

隐藏数据库(加密)

要处理 D:

- 生成 PRF 密钥 k_{PRF}
- 去处理 $D' = D \oplus PRF(k_{PRF}, \cdots)$
- 把 k_{PRF} 放入 DE-PIR 客户端私钥 k 中

查询 D[i] 时查询 D'[i]

收到回复后计算 $D[i] = D'[i] \oplus PRF(k_{PRF}, i)$

查询结果隐藏时, 不可区分安全性 蕴含着模拟安全性

为什么在"外部"变换 而不直接用 (PH-)FE "内部"实现? 为了让证明所需要的(PH-)FE 尽可能弱.

1. 给它下恰当的定义 2. 用合适的工具构造它 3. 证明这一构造正确且安全

发明和使用工具的四个步骤 根据需求给工具下恰当的定义 用合适的底层工具构造它 证明这一构造正确且安全 用工具构造产品

要把大象装冰箱,总共分几步?

要把长颈鹿装冰箱,总共分几步?

 $M^{D_1,...,D_T}(w)$ 的输出序列 outS($M, D_1, ..., D_T, w$) = (out₁, ..., out_{T-1})

适用于 Φ = { φ : $F_{\varphi} \times X_{\varphi} \times Y_{\varphi} \rightarrow$ { \bot } U (N₊ × Z_{φ})} 的偏泛函加密 • $\varphi(f, x, y) = (T, z)$ 表示计算时间是 T 且输出是 z

• $\varphi(f, x, y) = \bot$ 表示计算不作定义 排除不停机的情况 T 代表"无密码学参与"时的计算时间,

在	2+	
昇	江	

- Setup($\varphi \in \Phi$) \rightarrow (mpk, msk)
- KeyGen(msk, $f \in F_{\varphi}$) \rightarrow sk_f
- Enc(mpk, $x \in X_{\varphi}, y \in Y_{\varphi}) \to ct_x$
- $\operatorname{Dec}^{\operatorname{mpk},f,\operatorname{sk}_f,x,\operatorname{ct}_x}() \to z'$

可进一步加强定义,如本作实现的 _ 是 (T + |f| + |x| + |y|) poly $(|\varphi|)$

正确性. 若 $\varphi(f, x, y) = (T, z)$ 则z = z'且 Dec 在 poly($|\varphi|, |f|, |x|, |y|, T$)步内停机

偏泛函加密:适用于 RAM 的 PHFE

令
实际使用时
$$M$$
 应选为**通用** RAM 并令 $T_{max} = 2^{\lambda}$
 $\varphi_{M,T_{max}}(f,x,y)$ (f 理解为汇编代码而 xy 理解为输入)

$$=\begin{cases} (T, \text{outS}(M, f, xy, \varepsilon)), & 若 T = \text{time}(M, f, xy, \varepsilon) \leq T_{max}; \\ \bot, & 其他情况. \end{cases}$$

其中

M 可以取任何双输入纸带、无短输入的 RAM
 *T*_{max} 可以取任何正整数
 且 φ_{M,Tmax} 的描述长度是 (|*M*| + [log₂ *T*_{max}])

对定义的**形式化可行性**、 实现**短密钥短密文**至关重要

偏泛函加密: 电路 FE (工具)

今

其中 $s \ge \ell$ 可取任何正整数且 $\varphi_{\ell,s}$ 的描述长度是 $(\ell + s)$ 所有算法都可以有 关于 ℓ,s **任意糟糕的多项式**复杂度

RAM 乱码化 + 电路 FE ⇒ 适用于 RAM 的 PHFE

—无需依赖电路 FE 性能

凝练乱码 RAM + 电路 FE

未解问题: (PH-)FE、ABE 路在何方?

1. 构造最速解密的 PHFE 以及(或者仅利用) DE-PIR 的效率理想型.

2. 达成 y 码率为 1 和适应性安全、无限制输出长度(之一).

3. 探究最速解密和 DE-PIR 类型之间的紧关系.

电路 FE + 公钥 DE-PIR \Rightarrow (*x*, *y*)-最速解密 \Rightarrow 私钥 DE-PIR.^[ACFQ] 电路 FE + 私钥 DE-PIR \Rightarrow ...?

4. 完全刻画它们的 Pareto 效率前沿. 即解答<mark>阴影区域</mark>的情况.

<u>ia.cr/2022/1317</u>(修订在即)

<u>哔哩哔哩 BV1qs4y1Q7G9</u>

luoji@cs.washington.edu / luoji.bio