
How to Simulate

Random Oracles with Auxiliary Input

Yevgeniy Dodis
Email to Yevgeniy Dodis

Website of Yevgeniy Dodis Aayush Jain
Email to Aayush Jain

Website of Aayush Jain Rachel Lin
Email to Rachel Lin

Website of Rachel Lin 罗辑
Ji Luo Email to Ji Luo

Website of Ji Luo Daniel Wichs
Email to Daniel Wichs

Website of Daniel Wichs

FOCS | 29 October 2024 1 / 12

mailto:dodis@cs.nyu.edu
https://cs.nyu.edu/~dodis/
mailto:aayushja@andrew.cmu.edu
https://sites.google.com/view/aayushjain/home
mailto:rachel@cs.washington.edu
https://homes.cs.washington.edu/~rachel/
mailto:luoji@bu.edu
https://luoji.bio/
mailto:wichs@ccs.neu.edu
https://www.ccs.neu.edu/home/wichs/

Random Oracle Model [BR93]
Standard-Model (Real-World) Hash Functions

0,1 𝑛
 or
0,1 ∗

0,1 𝜆

✘ no control over how code is used
⟹ difficulty in analyzing security

Random Oracle Model

𝒪: 0,1 Τ𝑛 ∗ → 0,1 𝜆

random truth table

𝑥

𝒪 𝑥

 easier security analysis
• practical schemes
• qualitative – what property?
• quantitative – 𝑇, 𝜀 -security

 ✘ overly optimistic
 against non-uniform adversaries

2 / 12

https://doi.org/10.1145/168588.168596

Non-Uniformity, Examples of Over-Optimism

O03

Non-Uniform Adversary = machine 𝑨, sequence 𝒛𝝀 𝝀∈ℕ of strings (advice)

on security parameter 𝜆: 𝐴 1𝜆, 𝑧𝜆 scheme
potential benefits of reusable preprocessing (e.g., rainbow tables [O03])

Qualitative
ROM. 𝒪 is a keyless collision-resistant (CR) hash function.

Fact. Keyless functions cannot be CR against non-uniform adversaries.
 (advice = smallest collision)

Quantitative

FN91

ROM. to invert 𝑦 = 𝒪 𝑥 w.p. Ω 1 given 𝑦, need 𝑄 = Ω 2𝜆 queries.
 (heuristic) ⟹
 to invert 𝑦 = 𝐻 𝑥 for “good” 𝐻, need 𝑇 = Ω 2𝜆 .

Fact. to invert 𝑦 = 𝐻 𝑥 , (𝑆 = advice length) 𝑆, 𝑇 = O 2 Τ3𝜆 4 suffices [FN91].

3 / 12

https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1145/103418.103473

Auxiliary-Input Random Oracle Model [U07]

adversary = machine 𝐴, function ai
on security parameter 𝜆:
• 𝑧 ← ai 𝜆, 𝒪
• 𝐴 1𝜆, 𝑧 𝒪 and scheme

FN91

 avoids overly optimistic heuristics
• qualitative – no seedless CRHF (advice = collision, depends on 𝒪)

• quantitative – [FN91] attack carries over to AI-ROM

 ✘ difficulty in analyzing security
• ROM – can lazy-sample/program truth table
• AI-ROM – 𝐴 1𝜆, 𝑧 𝒪 how to handle arbitrary correlation?

4 / 12

https://eprint.iacr.org/2007/168
https://doi.org/10.1145/103418.103473

Primary Goal, Previous/Our Results

“Develop methods for showing (tight) security in AI-ROM.”

Known Result. Presampling method [U07,CDGS17]
 to “simulate” AI-ROM information-theoretically,
 as tight as it can be, but not tight.

Our Main Result. A new technique
 to simulate AI-ROM computationally,
 much tighter!

tight. 𝑇reduction ∼ 𝑇underlying; qualitatively – same/stronger security from weaker/same assumptions.

5 / 12

https://eprint.iacr.org/2007/168
https://eprint.iacr.org/2017/937

Why Two Colors for Simulation?

Two-Stage Definition (Distinguisher-Independent Simulation)

1. let 𝐴 𝑧 𝒪 and record transcript 𝜏 of 𝐴
2. 𝐷 𝜏 → 0,1 (no 𝒪!)

Requirement is ∀ 𝐴, ai ∃ 𝑆, nu ∀𝐷 …
• “nu” for (standard-model) non-uniformity
• zero-knowledge uses two-stage definition

Simulated Step 1.
• 𝑧, 𝑤 ← nu 𝜆
• let 𝐴 𝑧 𝑆 𝑤

𝒘 = extra advice

Single-Stage Definition (Distinguisher-Dependent Simulation)

• let 𝐴 𝑧 𝒪 and 𝐴 outputs a bit

Requirement is ∀ 𝐴, ai ∃ 𝑆, nu …
 (think of 𝐷 merged inside 𝐴)

6 / 12

https://eprint.iacr.org/2007/168

Comparison of Simulation Methods

method / assumption extra advice time per query

presampling [U07,CDGS18] Θ 𝜆𝑛𝑆 Τ𝑄 𝜀 Θ 𝜆𝑛𝑆 Τ𝑄 𝜀 [circuit] or ෩O 𝑛 [RAM]

subexp.sec. PRF poly 𝜆, 𝑛, 𝑆 poly 𝜆, 𝑛, 𝑆

exp.sec. quasi.lin.time PRG O 𝜆 + 𝑆 𝑛 ⋅ ෩O 𝜆 + 𝑆

faster-than-secure PRF O 𝑛1+𝛾 𝜆 + 𝑆 1+𝛾 𝑛1+𝛾 ⋅ polylog 𝜆, 𝑛, 𝑆 [RAM]

𝜸 > 𝟎 arbitrarily tunable
• Showing 𝒪: 0,1 𝑛 → 0,1 𝜆.
• Presampling requires knowing 𝑄, 𝜀 in advance

– (due to 𝜀,) fails two-stage definitions (e.g., zero-knowledge).
^ would need super-poly.-time sim. for negl. 𝜺

• All ours satisfy two-stage definition.

• 𝑆, 𝑄 are (adversarial resources) large poly 𝜆 [even 2Θ 𝜆 in concrete security].
• Optimization Priority. 𝑆, 𝑇, 𝑄, 𝜀 ≻ 𝑛 ≻ 𝜆 – Last 2 of ours are tighter.

7 / 12

https://eprint.iacr.org/2007/168
https://eprint.iacr.org/2017/937

Key Idea

Q. The simulator is efficient and looks like a random function.
 What can it be?
 A. A pseudorandom function (PRF).

Let’s try it… [⋯ = transcript]

𝐴 ai 𝒪 𝒪 ≈
?

𝐴 ai 𝐹 𝑘, ⋅ 𝐹 𝑘, ⋅
𝐚𝐢: arbitrarily complex

CCL18

Fix (leakage simulation lemma [CCL18]). Let
 𝑋 = 𝒪, 𝑍 = ai 𝑋 (of length 𝑆),
then ∃ai′ of complexity ∼ Τ2𝑆𝑆𝑇 𝜀2:
 𝑋, 𝑍 ≈𝑇,𝜀 𝑋, ai′ 𝑋 .

“ function of output length 𝑺,
complexity controlled at ∼ 𝟐𝑺 ”

≈
1

𝐴 ai′ 𝒪 𝒪

≈
2

𝐴 ai′ 𝐹 𝑘, ⋅ 𝐹 𝑘, ⋅

1 set 𝑇 = 2𝜆 > 𝑇𝐴 + 𝑇𝐷 and 𝜀 = 2−𝜆

2 tune up 𝜆prf for security

 against total time (∼ 2𝑆+𝜆)

requires subexp.-secure PRF
8 / 12

https://eprint.iacr.org/2018/171

Tight Reduction = Fast and Secure PRF

Convention. at 𝜆prf, the PRF is 𝜀-secure in 2𝜆prf time.
• fixed level of security
• compete for small 𝑇prf (plus, short 𝑘 = extra advice)

Typical. 𝑇prf = 𝑛 × Ω 𝜆prf
• 𝜆prf ≥ 𝑆 + 𝜆

AR16 G00

Wish. What about 𝑇prf = 𝑛 ⋅ polylog 𝜆prf ?
 [AR16] weak PRF with 𝑇wprf = ෩O 𝑛 from Goldreich’s PRG [G00]

𝑇prf ∈ subpoly 𝜆
 “faster than secure”

9 / 12

https://eprint.iacr.org/2016/813
https://eprint.iacr.org/2000/063

Faster-than-Secure PRF from Goldreich’s PRG

𝑘 -bit input

2𝑛-bit input

1

1 1 1

2

2 2 2

hyperedges 𝑺𝟎, 𝑺𝟏, 𝑺𝟐, … , 𝑺𝟐𝒏−𝟏

𝐹 𝑘, 𝑥 = 𝑃 𝑘 𝑆𝑥 with fixed function 𝑃 [e.g., XOR-MAJ]

• cryptanalysis. exp.-PRF if 𝑆𝑥 𝑥 is sufficiently expanding
 [e.g., 𝑡, 0.99 for 𝑡 ∼ 𝜆prf

1+𝛾
]

✓ locality = 𝑃’s input length = Θ 𝑛
❓ represent exp.-size hypergraph succinctly (extra advice)
❓ compute 𝑆𝑥 efficiently (time per query)

10 / 12

Representing and Accessing Expanders

2𝑛-size hypergraph must be 𝑡, 0.99 -expanding, 𝑡 ∼ 𝜆prf
1+𝛾

.

• 𝑆𝑥 = ℎ 𝑥 is expanding w.h.p. with 𝑡-wise independent ℎ
• let ℎ be a degree-𝑡 polynomial

KU09

Evaluate 𝑥 ↦ ℎ 𝑥 ↦ 𝑆𝑥 in time 𝑛 ⋅ o 𝜆prf ?

• fast polynomial evaluation [KU09]
• coefficients ====== preprocess =====> size 𝑡1+𝛾 log1+𝛾 𝑝 (𝑝 for field)
• online. evaluation time is log1+𝛾 𝑝 ⋅ polylog 𝑡 ∼ 𝑛1+𝛾 polylog 𝜆prf

11 / 12

https://doi.org/10.1137/08073408X

Leakage Simulation + Subexponentially Secure PRF =====> AI-ROM simulation

==
>

first NIZK in AI-ROM

“Faster-than-Secure” =====> very tight

another trick: combine presampling + ours
for best of both worlds [see paper!]

Thanks!

luoji@bu.edu
luoji.bio

12 / 12

mailto:luoji@bu.edu
https://luoji.bio/

	Slide 1: How to Simulate Random Oracles with Auxiliary Input
	Slide 2: Random Oracle Model [BR93]
	Slide 3: Non-Uniformity, Examples of Over-Optimism
	Slide 4: Auxiliary-Input Random Oracle Model [U07]
	Slide 5: Primary Goal, Previous/Our Results
	Slide 6: Why Two Colors for Simulation?
	Slide 7: Comparison of Simulation Methods
	Slide 8: Key Idea
	Slide 9: Tight Reduction = Fast and Secure PRF
	Slide 10: Faster-than-Secure PRF from Goldreich’s PRG
	Slide 11: Representing and Accessing Expanders
	Slide 12: Summary and Thanks

