How to Simulate Random Oracles with Auxiliary Input

Random Oracle Model [BR93]

Standard-Model (Real-World) Hash Functions

X no control over how code is used⇒ difficulty in analyzing security

Random Oracle Model

- ✓ easier security analysis
 - practical schemes
 - **qualitative** what property?
 - **quantitative** (T, ε) -security
- **X** overly optimistic

against non-uniform adversaries

Non-Uniformity, Examples of Over-Optimism

Non-Uniform Adversary = machine A, sequence $\{z_{\lambda}\}_{\lambda \in \mathbb{N}}$ of strings (advice)

on security parameter λ : $A(1^{\lambda}, z_{\lambda}) \leftrightarrow$ scheme potential benefits of reusable preprocessing (e.g., rainbow tables [003])

> \blacktriangle Advice depends on *H*. ROM does not capture O-dependent advice.

Keyless functions cannot be CR against non-uniform adversaries. Fact. (advice = smallest collision)

ROM. O is a keyless collision-resistant (CR) hash function.

Quantitative

Qualitative

ROM. to invert y = O(x) w.p. $\Omega(1)$ given y, $(heuristic) \Rightarrow$

to invert y = H(x) for "good" H,

need $Q = \Omega(2^{\lambda})$ queries.

need $T = \Omega(2^{\lambda})$. $S, T = O(2^{3\lambda/4})$ suffices [FN91]. **Fact.** to invert y = H(x), (*S* = advice length)

Auxiliary-Input Random Oracle Model [Uo7]

adversary = machine *A*, function ai

on security parameter λ :

- $z \leftarrow ai(\lambda, \mathcal{O})$
- $A(1^{\lambda}, z) \leftrightarrow \mathcal{O}$ and scheme

✓ avoids overly optimistic heuristics

- qualitative no seedless CRHF (advice = collision, depends on O)
- quantitative [FN91] attack carries over to AI-ROM

X difficulty in analyzing security

No clue even for proving DDH in Al-ROM from DDH in non-uniform standard model!

- ROM can lazy-sample/program truth table
- AI-ROM $A(1^{\lambda}, z) \leftrightarrow \mathcal{O}$ how to handle **arbitrary correlation**?

non-computable ai allowed; output length S depends on λ .

Primary Goal, Previous/Our Results

"Develop methods for showing (tight) security in AI-ROM."

Known Result.Presampling method [U07,CDGS17]to "simulate" AI-ROM information-theoretically,
as tight as it can be, but not tight.

Our Main Result. A new technique to simulate AI-ROM computationally, much tighter!

<u>tight</u>. $T_{reduction} \sim T_{underlying}$; qualitatively – **same/stronger** security from **weaker/same** assumptions.

Why Two Colors for Simulation?

open since AI-ROM conception [U07]

Two-Stage Definition (Distinguisher-Independent Simulation)

- 1. let $A(z) \leftrightarrow \mathcal{O}$ and record transcript τ of A
- 2. $D(\tau) \rightarrow \{0,1\}$ (no $\mathcal{O}!$)

Requirement is $\forall (A, ai) \exists (S, nu) \forall D \dots$

- "nu" for (standard-model) non-uniformity
- zero-knowledge uses two-stage definition

Simulated Step 1.

•
$$(z, w) \leftarrow \operatorname{nu}(\lambda)$$

• let
$$A(z) \leftrightarrow S(w)$$

w = extra advice

Single-Stage Definition (Distinguisher-Dependent Simulation)

• let $A(z) \leftrightarrow O$ and A outputs a bit

Requirement is $\forall (A, ai) \exists (S, nu) \dots$

(think of *D* merged inside *A*)

Comparison of Simulation Methods

method / assumption	extra advice	time per query
presampling [<u>U07</u> ,CDGS18]	Θ(λnS <mark>Q/ε</mark>)	$\Theta(\lambda n S \frac{Q}{\epsilon})$ [circuit] or $\widetilde{O}(n)$ [RAM]
subexp.sec. PRF	$poly(\lambda, n, S)$	$poly(\lambda, n, S)$
exp.sec. quasi.lin.time PRG	$O(\lambda + S)$	$n \cdot \widetilde{O}(\lambda + S)$
faster-than-secure PRF	$O(n^{1+\gamma}(\lambda+S)^{1+\gamma})$	$n^{1+\gamma} \cdot \operatorname{polylog}(\lambda, n, S)$ [RAM]

 $\gamma > 0$ arbitrarily tunable

- Showing $\mathcal{O}: \{0,1\}^n \to \{0,1\}^{\lambda}$.
- Presampling requires knowing Q, ε in advance
 - (due to ε ,) **fails** two-stage definitions (e.g., zero-knowledge).

^ would need super-poly.-time sim. for negl. ε

- All ours satisfy two-stage definition.
- *S*, *Q* are (adversarial resources) large poly(λ) [even $2^{\Theta(\lambda)}$ in concrete security].
 - Optimization Priority. $S, T, Q, \varepsilon > n > \lambda$ Last 2 of ours are tighter.

✓ first NIZK in AI-ROM

- The simulator is **efficient** and **looks like a random function**. **Q**. What can it be?
- **A.** A pseudorandom function (PRF).

Let's try it... $\langle \cdots \rangle$ = transcript]

 $\langle A(\operatorname{ai}(\mathcal{O})) \leftrightarrow \mathcal{O} \rangle \stackrel{?}{\approx} \langle A(\operatorname{ai}(F(k, \cdot))) \leftrightarrow F(k, \cdot) \rangle$

 $\stackrel{(1)}{\approx} \langle A(ai'(\mathcal{O})) \leftrightarrow \mathcal{O} \rangle \qquad \text{ai: arbitrarily complex}$

 $\stackrel{(2)}{\approx} \langle A(\operatorname{ai}'(F(k,\cdot))) \leftrightarrow F(k,\cdot) \rangle$

(1) set $T = 2^{\lambda} > T_A + T_D$ and $\varepsilon = 2^{-\lambda}$ (2) tune up λ_{prf} for security against total time (~ $2^{S+\lambda}$) requires subexp.-secure PRF

✓ resolves open problem of AI-ROM simulation (two-stage definition)

even better – does not depend on A

Fix (leakage simulation lemma [CCL18]). Let $X = \mathcal{O}, \quad Z = \operatorname{ai}(X) \text{ (of length } S),$ then $\exists ai'$ of complexity ~ $2^{S}ST/\epsilon^{2}$: $(X,Z) \approx_{T,\varepsilon} (X,\operatorname{ai}'(X)).$

> "function of output length S, complexity controlled at $\sim 2^{S}$ "

Tight Reduction = Fast and Secure PRF

Convention. at λ_{prf} , the PRF is ε -secure in $2^{\lambda_{prf}}$ time.

- fixed level of security
- compete for small T_{prf} (plus, short k = extra advice)

Typical.
$$T_{\text{prf}} = n \times \Omega(\lambda_{\text{prf}})$$

• $\lambda_{\text{prf}} \ge S + \lambda$

adversary-dependent degrades quickly $T_{\text{prf}} \in \text{subpoly}(\lambda)$ "faster than secure"

Wish. What about $T_{prf} = n \cdot \frac{\text{polylog}(\lambda_{prf})}{[AR16]}$? [AR16] weak PRF with $T_{wprf} = \tilde{O}(n)$ from Goldreich's PRG [Goo]

Faster-than-Secure PRF from Goldreich's PRG

(time per query)

 2^n -bit input

 $F(\mathbf{k}, x) = P(k[S_x])$ with fixed function P [e.g., XOR-MAJ]

- **cryptanalysis.** exp.-PRF if $(S_{\chi})_{\chi}$ is sufficiently expanding [e.g., (t, 0.99) for $t \sim \lambda_{prf}^{1+\gamma}$]
- ✓ locality = P's input length = $\Theta(n)$
- **?** represent exp.-size hypergraph succinctly (extra advice)
- ? compute S_x efficiently

Representing and Accessing Expanders

 2^{n} -size hypergraph must be (t, 0.99)-expanding, $t \sim \lambda_{prf}^{1+\gamma}$.

- $S_x = h(x)$ is expanding w.h.p. with *t*-wise independent *h*
- let *h* be a degree-*t* polynomial

Evaluate $x \mapsto h(x) \mapsto S_x$ in time $n \cdot o(\lambda_{prf})$?

- fast polynomial evaluation [KU09]
- coefficients ==== preprocess ===> size $t^{1+\gamma} \log^{1+\gamma} p$ (p for field)
- online. evaluation time is $(\log^{1+\gamma} p) \cdot \operatorname{polylog}(t) \sim n^{1+\gamma} \operatorname{polylog}(\lambda_{prf})$

$\label{eq:linear} \begin{array}{l} \mbox{first NIZK in AI-ROM} \\ \mbox{\widehat{f}} \end{array}$ Leakage Simulation + Subexponentially Secure PRF \implies AI-ROM simulation "Faster-than-Secure" \implies very tight

Thanks!

<u>luoji@bu.edu</u> <u>luoji.bio</u> another trick: combine presampling + ours for best of both worlds [see paper!]