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Random Oracle Model  [BR93]
Standard-Model (Real-World) Hash Functions

0,1 𝑛 
 or 
0,1 ∗ 

0,1 𝜆

✘ no control over how code is used
⟹  difficulty in analyzing security

Random Oracle Model

𝒪: 0,1 Τ𝑛 ∗ → 0,1 𝜆

random truth table

𝑥

𝒪 𝑥

 easier security analysis
• practical schemes
• qualitative     –  what property?
• quantitative  – 𝑇, 𝜀 -security

 ✘ overly optimistic
          against non-uniform adversaries
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https://doi.org/10.1145/168588.168596


Non-Uniformity, Examples of Over-Optimism

O03

Non-Uniform Adversary = machine 𝑨, sequence 𝒛𝝀 𝝀∈ℕ of strings (advice)

on security parameter 𝜆:    𝐴 1𝜆, 𝑧𝜆  scheme
potential benefits of reusable preprocessing (e.g., rainbow tables [O03])

Qualitative
ROM. 𝒪 is a keyless collision-resistant (CR) hash function.

Fact. Keyless functions cannot be CR against non-uniform adversaries.
                (advice = smallest collision)

Quantitative

FN91

ROM. to invert 𝑦 = 𝒪 𝑥  w.p. Ω 1  given 𝑦, need 𝑄 = Ω 2𝜆  queries.
  (heuristic) ⟹
 to invert 𝑦 = 𝐻 𝑥  for “good” 𝐻,  need 𝑇 = Ω 2𝜆 .

Fact. to invert 𝑦 = 𝐻 𝑥 , (𝑆 = advice length) 𝑆, 𝑇 = O 2 Τ3𝜆 4  suffices [FN91].
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https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1145/103418.103473


Auxiliary-Input Random Oracle Model  [U07]

adversary  =  machine 𝐴,  function ai
on security parameter 𝜆:
•  𝑧 ← ai 𝜆, 𝒪
•  𝐴 1𝜆, 𝑧 𝒪 and scheme

FN91

  avoids overly optimistic heuristics
• qualitative     –  no seedless CRHF (advice = collision, depends on 𝒪)

• quantitative  –  [FN91] attack carries over to AI-ROM

 ✘  difficulty in analyzing security
•    ROM  –  can lazy-sample/program truth table
• AI-ROM  –  𝐴 1𝜆, 𝑧 𝒪    how to handle arbitrary correlation?
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https://eprint.iacr.org/2007/168
https://doi.org/10.1145/103418.103473


Primary Goal, Previous/Our Results

“Develop methods for showing (tight) security in AI-ROM.”

Known Result. Presampling method  [U07,CDGS17]
   to “simulate” AI-ROM information-theoretically,
   as tight as it can be, but not tight.

Our Main Result. A new technique
   to   simulate   AI-ROM computationally,
   much tighter!

tight.  𝑇reduction ∼ 𝑇underlying; qualitatively – same/stronger security from weaker/same assumptions.
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https://eprint.iacr.org/2007/168
https://eprint.iacr.org/2017/937


Why Two Colors for Simulation?

Two-Stage Definition  (Distinguisher-Independent Simulation)

1.  let 𝐴 𝑧 𝒪 and record transcript 𝜏 of 𝐴
2.  𝐷 𝜏 → 0,1     (no 𝒪!)

Requirement is  ∀ 𝐴, ai ∃ 𝑆, nu ∀𝐷 …
•  “nu” for (standard-model) non-uniformity
•  zero-knowledge uses two-stage definition

Simulated Step 1.
• 𝑧, 𝑤 ← nu 𝜆
• let 𝐴 𝑧 𝑆 𝑤

𝒘 = extra advice 

Single-Stage Definition  (Distinguisher-Dependent Simulation)

•  let 𝐴 𝑧 𝒪 and 𝐴 outputs a bit

Requirement is  ∀ 𝐴, ai ∃ 𝑆, nu …
 (think of 𝐷 merged inside 𝐴)
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https://eprint.iacr.org/2007/168


Comparison of Simulation Methods

method / assumption extra advice time per query

presampling  [U07,CDGS18] Θ 𝜆𝑛𝑆 Τ𝑄 𝜀 Θ 𝜆𝑛𝑆 Τ𝑄 𝜀  [circuit] or ෩O 𝑛  [RAM]

subexp.sec. PRF poly 𝜆, 𝑛, 𝑆 poly 𝜆, 𝑛, 𝑆

exp.sec. quasi.lin.time PRG O 𝜆 + 𝑆 𝑛 ⋅ ෩O 𝜆 + 𝑆

faster-than-secure PRF O 𝑛1+𝛾 𝜆 + 𝑆 1+𝛾 𝑛1+𝛾 ⋅ polylog 𝜆, 𝑛, 𝑆  [RAM]

𝜸 > 𝟎  arbitrarily tunable
•  Showing 𝒪: 0,1 𝑛 → 0,1 𝜆.
•  Presampling requires knowing 𝑄, 𝜀 in advance

– (due to 𝜀,) fails two-stage definitions (e.g., zero-knowledge).
^ would need super-poly.-time sim. for negl. 𝜺

•  All ours satisfy two-stage definition.

•  𝑆, 𝑄 are (adversarial resources) large poly 𝜆   [even 2Θ 𝜆  in concrete security].
•  Optimization Priority.  𝑆, 𝑇, 𝑄, 𝜀 ≻ 𝑛 ≻ 𝜆 – Last 2 of ours are tighter.
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Key Idea

Q. The simulator is efficient and looks like a random function.
 What can it be?
      A. A pseudorandom function (PRF).

Let’s try it…  [ ⋯ = transcript]

𝐴 ai 𝒪 𝒪 ≈
?

𝐴 ai 𝐹 𝑘, ⋅ 𝐹 𝑘, ⋅  
𝐚𝐢:  arbitrarily complex

CCL18

Fix (leakage simulation lemma [CCL18]).  Let
       𝑋 = 𝒪,    𝑍 = ai 𝑋   (of length 𝑆),
then ∃ai′ of complexity ∼ Τ2𝑆𝑆𝑇 𝜀2:
 𝑋, 𝑍 ≈𝑇,𝜀 𝑋, ai′ 𝑋 .

“ function of output length 𝑺,     
complexity controlled at ∼ 𝟐𝑺 ”

≈
1

𝐴 ai′ 𝒪 𝒪  

≈
2

𝐴 ai′ 𝐹 𝑘, ⋅ 𝐹 𝑘, ⋅  

1   set 𝑇 = 2𝜆 > 𝑇𝐴 + 𝑇𝐷 and 𝜀 = 2−𝜆

2   tune up 𝜆prf for security

            against total time (∼ 2𝑆+𝜆)

requires subexp.-secure PRF
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https://eprint.iacr.org/2018/171


Tight Reduction  =  Fast and Secure PRF

Convention.  at 𝜆prf, the PRF is 𝜀-secure in 2𝜆prf time.
•  fixed level of security
•  compete for small 𝑇prf    (plus, short 𝑘 = extra advice)

Typical.  𝑇prf = 𝑛 × Ω 𝜆prf
•  𝜆prf ≥ 𝑆 + 𝜆

AR16 G00

Wish.  What about  𝑇prf = 𝑛 ⋅ polylog 𝜆prf  ?
 [AR16] weak PRF with 𝑇wprf = ෩O 𝑛  from Goldreich’s PRG [G00]

𝑇prf ∈ subpoly 𝜆
 “faster than secure”
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https://eprint.iacr.org/2016/813
https://eprint.iacr.org/2000/063


Faster-than-Secure PRF from Goldreich’s PRG

𝑘 -bit input

2𝑛-bit input

1

1 1 1

2

2 2 2

hyperedges 𝑺𝟎, 𝑺𝟏, 𝑺𝟐, … , 𝑺𝟐𝒏−𝟏

𝐹 𝑘, 𝑥 = 𝑃 𝑘 𝑆𝑥  with fixed function 𝑃  [e.g., XOR-MAJ]

•  cryptanalysis.  exp.-PRF if 𝑆𝑥 𝑥 is sufficiently expanding
     [e.g., 𝑡, 0.99  for 𝑡 ∼ 𝜆prf

1+𝛾
]

✓  locality = 𝑃’s input length = Θ 𝑛
❓  represent exp.-size hypergraph succinctly  (extra advice)
❓  compute 𝑆𝑥 efficiently         (time per query)
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Representing and Accessing Expanders

2𝑛-size hypergraph must be 𝑡, 0.99 -expanding, 𝑡 ∼ 𝜆prf
1+𝛾

.

•  𝑆𝑥 = ℎ 𝑥  is expanding w.h.p. with 𝑡-wise independent ℎ
•  let ℎ be a degree-𝑡 polynomial

KU09

Evaluate 𝑥 ↦ ℎ 𝑥 ↦ 𝑆𝑥  in time 𝑛 ⋅ o 𝜆prf  ?

•  fast polynomial evaluation  [KU09]
•  coefficients ====== preprocess =====> size 𝑡1+𝛾 log1+𝛾 𝑝  (𝑝 for field)
•  online. evaluation time is log1+𝛾 𝑝 ⋅ polylog 𝑡 ∼ 𝑛1+𝛾 polylog 𝜆prf
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https://doi.org/10.1137/08073408X


Leakage Simulation  +  Subexponentially Secure PRF  =====>  AI-ROM simulation

==
>

first NIZK in AI-ROM

“Faster-than-Secure”  =====>  very tight

another trick:  combine presampling + ours
for best of both worlds  [see paper!]

Thanks!

luoji@bu.edu
luoji.bio
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